【題目】如圖,在梯形中,,,,是的中點(diǎn),將沿折起得到圖(二),點(diǎn)為棱上的動(dòng)點(diǎn).
(1)求證:平面平面;
(2)若,二面角為,點(diǎn)為中點(diǎn),求二面角余弦值的平方.
【答案】(1)見(jiàn)證明;(2)
【解析】
(1)根據(jù),證得平面,從而證得平面平面.(2)以,,所在直線(xiàn)為,,軸,建立空間直角坐標(biāo)系,通過(guò)計(jì)算和的法向量,計(jì)算出二面角余弦值的平方.
證明:(1)在圖(一)梯形中,
∵是的中點(diǎn),,,
∴,.
∴四邊形為平行四邊形.
又∵,∴,
在圖(二)中,∵,,平面,平面,
∴平面,
又∵平面,∴平面平面.
解:(2)由及條件關(guān)系,得,
由(1)的證明可知,,
∴為二面角的平面角,
∴,
由(1)的證明易知平面平面,且交線(xiàn)為,
∴在平面內(nèi)過(guò)點(diǎn)作直線(xiàn)垂直于,
則平面,
∴,,兩兩相互垂直,
∴分別以,,所在直線(xiàn)為,,軸,建立空間直角坐標(biāo)系,
則,,,,
∵為中點(diǎn),
∴,
,.
設(shè)平面的一個(gè)法向量,
則 ,
即,
令,則,,
∴,
而平面的一個(gè)法向量,
∴ ,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線(xiàn)平面,垂足是,正四面體的棱長(zhǎng)為,點(diǎn)在平面上運(yùn)動(dòng),點(diǎn)在直線(xiàn)上運(yùn)動(dòng),則點(diǎn)到直線(xiàn)的距離的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,AB⊥AD,AB⊥BC,側(cè)面SAB⊥底面ABCD,且SA=SB=AB=BC=2,AD=1.
(1)設(shè)E為棱SB的中點(diǎn),求證:AE⊥平面SBC;
(2)求平面SCD與平面SAB所成銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C, AB=3,BC=5.
(1)求證:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值;
(3)求點(diǎn)C到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年,中國(guó)某省的一個(gè)地區(qū)社會(huì)民間組織為年齡在30歲-60歲的圍棋愛(ài)好者舉行了一次晉級(jí)賽,參賽者每人和一位種子選手進(jìn)行一場(chǎng)比賽,贏(yíng)了就可以晉級(jí),否則,就不能晉級(jí),結(jié)果將晉級(jí)的200人按年齡(單位:歲)分成六組:第一組,第二組,第三組,第四組,第五組,第六組,下圖是按照上述分組方法得到的頻率分布直方圖.
(1)求實(shí)數(shù)的值;
(2)若先在第四組、第五組、第六組中按組分層抽樣共抽取10人,然后從被抽取的這10人中隨機(jī)抽取3人參加優(yōu)勝比賽.
①求這三組各有一人參加優(yōu)勝比賽的概率;
②設(shè)為參加優(yōu)勝比賽的3人中第四組的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱的所有棱長(zhǎng)均為2,底面側(cè)面, , 為的中點(diǎn), .
(1)證明: .
(2)若是棱上一點(diǎn),滿(mǎn)足,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的前n項(xiàng)和為,,公差為
若,求數(shù)列的通項(xiàng)公式;
是否存在d,n使成立?若存在,試找出所有滿(mǎn)足條件的d,n的值,并求出數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市高中某學(xué)科競(jìng)賽中,某區(qū)名考生的參賽成績(jī)的頻率分布直方圖如圖所示.
(1)求這名考生的平均成績(jī)(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表);
(2)記分以上為合格,分及以下為不合格,結(jié)合頻率分布直方圖完成下表,能否在犯錯(cuò)誤概率不超過(guò)的前提下認(rèn)為該學(xué)科競(jìng)賽成績(jī)與性別有關(guān)?
不合格 | 合格 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若<<0,則下列不等式:①<;②|a|+b>0;③a->b-;④lna2>lnb2中,正確的是( )
(A)①④ (B)②③ (C)①③ (D)②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com