分析 (I)利用點M(x,y)到準線的距離為x+2,列出方程即可求p的值;
(II)聯(lián)立直線與拋物線方程,消去x,利用韋達定理即可得到結(jié)果.
解答 解:(I)∵M(x,y)到準線的距離為$x+\frac{p}{2}$,∴$\frac{p}{2}=2,p=4$.…(4分)
(II)拋物線的焦點坐標(2,0),過拋物線C焦點F的直線l
設(shè)直線l:x=my+2,
聯(lián)立方程組$\left\{\begin{array}{l}x=my+2\\{y^2}=8x\end{array}\right.$…(7分)
化簡整理,得y2-8my-16=0.…(8分)
∴y1•y2=-16.…(10分)
點評 本題考查拋物線方程的求法,拋物線的簡單性質(zhì)的應(yīng)用,直線與拋物線的位置關(guān)系,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -4 | C. | -5 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 22 | B. | 17 | C. | 7 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{6-4ln2}{ln2}$ | B. | $\frac{6}{ln2}+4$ | C. | $\frac{12}{ln2}-4$ | D. | 3e-4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com