【題目】如圖,直線l過拋物線的焦點(diǎn)F且交拋物線于A,B兩點(diǎn),直線l與圓交于C,D兩點(diǎn),若,設(shè)直線l的斜率為k,則________.
【答案】
【解析】
由題意設(shè)直線的方程與拋物線聯(lián)立求出兩根之和,進(jìn)而求出弦長的值,再由圓的方程可得圓心為拋物線的焦點(diǎn)可得為圓的直徑,求出的值,再由題意可得的值,由題意可得A的橫坐標(biāo),代入直線的方程,可得A的縱坐標(biāo),代入拋物線的方程中可得斜率的平方的值.
由題意圓的圓心為拋物線的焦點(diǎn)F,
再由題意可得直線的斜率不為0,設(shè)直線的方程為:,,
設(shè),,聯(lián)立直線與拋物線的方程:,
整理可得,,所以,
由拋物線的性質(zhì)可得:弦長,
由題意可得為的直徑2,
所以,
而,所以可得:,
因為,
所以,代入直線中可得,
即,
將A點(diǎn)坐標(biāo)代入拋物線的方程,整理可得,
解得,
因為,所以,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列中,已知設(shè)數(shù)列的前n項和為,且
(1)求數(shù)列通項公式;
(2)證明:數(shù)列是等差數(shù)列;
(3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點(diǎn).
(1)求的取值范圍;
(2)設(shè)兩個極值點(diǎn)分別為:,,證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,過點(diǎn)且與軸垂直的直線被橢圓截得的線段長為,且與短軸兩端點(diǎn)的連線相互垂直.
(1)求橢圓的方程;
(2)若圓上存在兩點(diǎn),,橢圓上存在兩個點(diǎn)滿足:三點(diǎn)共線,三點(diǎn)共線,且,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線C的方程為,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.
(1)求直線l的直角坐標(biāo)方程;
(2)已知P是曲線C上的一動點(diǎn),過點(diǎn)P作直線交直線于點(diǎn)A,且直線與直線l的夾角為45°,若的最大值為6,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三棱柱柱中底面邊長為2,高為3,DE分別在與上,且.
(1)AE上是否存在一點(diǎn)P,使得面?若不存在,說明理由;若存在,指出P的位置;
(2)求點(diǎn)到截面ADE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)
(1)若在上單調(diào)遞增,則的取值范圍為______________;
(2)若對于任意實(shí)數(shù),方程有且只有一個實(shí)數(shù)根,且,函數(shù)的圖象與函數(shù)的圖象有三個不同的交點(diǎn),則的取值范圍為______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,是自然對數(shù)的底數(shù)),是函數(shù)的一個極值點(diǎn).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè),若,不等式恒成立,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com