【題目】已知函數(shù)在定義域內(nèi)有兩個不同的極值點.
(1)求的取值范圍;
(2)設(shè)兩個極值點分別為:,,證:.
【答案】(1).(2)見解析
【解析】
(1)由題得,令,則函數(shù)在定義域內(nèi)有兩個不同的極值點等價于在區(qū)間內(nèi)至少有兩個不同的零點,再利用導(dǎo)數(shù)得到,解不等式即得解;
(2)分析得到要證:,只需證明,即證,不妨設(shè),即證,構(gòu)造函數(shù)構(gòu)造函數(shù),其中,證明即得證.
(1)由題意可知,的定義域為,
且,
令,
則函數(shù)在定義域內(nèi)有兩個不同的極值點等價于在區(qū)間內(nèi)至少有兩個不同的零點.
由可知,
當(dāng)時,恒成立,即函數(shù)在上單調(diào),不符合題意,舍去.
當(dāng)時,由得,,即函數(shù)在區(qū)間上單調(diào)遞增;
由得,,即函數(shù)在區(qū)間上單調(diào)遞減;
故要滿足題意,必有,解得.
(2)證明:由(1)可知,,
故要證,
只需證明,
即證,不妨設(shè),即證,
構(gòu)造函數(shù),其中,
由,
所以函數(shù)在區(qū)間內(nèi)單調(diào)遞減,所以得證.
即證.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】流行病學(xué)資料顯示,歲以上男性靜息心率過高將會增加患心血管疾病的風(fēng)險,相反,靜息心率相對穩(wěn)定的到歲的男性,在未來年內(nèi)患心血管疾病的幾率會降低.研究員們還表示,其中靜息心率超過(次/分)的人比靜息心率低于的人罹患心血管疾病的風(fēng)險高出一倍.某單位對其所有的離、退休老人進行了靜息心率監(jiān)測,其中一次靜息心率的莖葉圖和頻率分布直方圖如下,其中,頻率分布直方圖的分組區(qū)間分別為、、、、,由于掃描失誤,導(dǎo)致部分?jǐn)?shù)據(jù)丟失.據(jù)此解答如下問題:
(1)求此單位離、退休人員總數(shù)和靜息心率在之間的頻率;
(2)現(xiàn)從靜息心率在之間的數(shù)據(jù)中任取份分析離、退休人員身體情況,設(shè)抽取的靜息心率在的份數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列是等比數(shù)列,公比大于0,前項和,是等差數(shù)列,已知,,,.
(Ⅰ)求數(shù)列,的通項公式,;
(Ⅱ)設(shè)的前項和為
(ⅰ)求;
(ⅱ)若,記,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在橢圓: 上, 是橢圓的一個焦點.
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓C上不與點重合的兩點, 關(guān)于原點O對稱,直線, 分別交軸于, 兩點.求證:以為直徑的圓被直線截得的弦長是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了更好地支持“中小型企業(yè)”的發(fā)展,某市決定對部分企業(yè)的稅收進行適當(dāng)?shù)臏p免,某機構(gòu)調(diào)查了當(dāng)?shù)氐闹行⌒推髽I(yè)年收入情況,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖,下面三個結(jié)論:
①樣本數(shù)據(jù)落在區(qū)間的頻率為0.45;
②如果規(guī)定年收入在500萬元以內(nèi)的企業(yè)才能享受減免稅政策,估計有55%的當(dāng)?shù)刂行⌒推髽I(yè)能享受到減免稅政策;
③樣本的中位數(shù)為480萬元.
其中正確結(jié)論的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進行了測驗,根據(jù)測驗結(jié)果繪制了雷達圖(如圖,每項指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是( )
A.甲的數(shù)據(jù)分析素養(yǎng)高于乙
B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)
C.乙的六大素養(yǎng)中邏輯推理最差
D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l過拋物線的焦點F且交拋物線于A,B兩點,直線l與圓交于C,D兩點,若,設(shè)直線l的斜率為k,則________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P﹣ABC中,平面PBC⊥平面ABC,∠ACB=90°,BC=PC=2,若AC=PB,則三棱錐P﹣ABC體積的最大值為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com