【題目】如圖,四面體ABCD中,OBD的中點(diǎn),AB=AD=2,.

(1)求證:AO⊥平面BCD;

(2)求異面直線ADBC所成角的余弦值的大;

【答案】(1)詳見(jiàn)解析(2)

【解析】

(1)分別證明AO垂直O(jiān)C,垂直BD,結(jié)合直線與平面垂直判定,即可.(2)建立空間坐標(biāo)系,分別計(jì)算各點(diǎn)坐標(biāo),結(jié)合向量數(shù)量積公式,計(jì)算,即可。

解:(1)連接OC,∵BO=DO,AB=AD,∴AO⊥BD,

∵BO=DO,BC=CD,∴CO⊥BD,

AOC中,由題設(shè)知AO=,,AC=

∴AO2+CO2=AC2,

∴∠AOC=90°,即AO⊥OC,

∵AO⊥BD,BD∩OC=O,

∴AO⊥平面BCD;

(2)結(jié)合題意,建立坐標(biāo)系,以O(shè)B為y軸,以O(shè)C為x軸,以AO為z軸,則

,

解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是定義在R上的函數(shù),對(duì)任意的,恒有,且當(dāng)時(shí), .

(1)的值;

(2)求證:對(duì)任意,恒有.

(3)求證:R上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列滿足, ,且.

(1)求數(shù)列的通項(xiàng)公式;

(2)若表示不超過(guò)的最大整數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)說(shuō)法中,錯(cuò)誤的選項(xiàng)有( ).

A.若函數(shù)上是單調(diào)增函數(shù),在上也是單調(diào)增函數(shù),則函數(shù)在R上是單調(diào)增函數(shù)

B.已知函數(shù)的解析式為,它的值域?yàn)?/span>,這樣的函數(shù)有無(wú)數(shù)個(gè)

C.把函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,就得到了函數(shù)的圖像

D.若函數(shù)為奇函數(shù),則一定有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,且直線是曲線的一條切線,求實(shí)數(shù)的值;

(2)若不等式對(duì)任意恒成立,求的取值范圍;

(3)若函數(shù)有兩個(gè)極值點(diǎn),且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的圖像過(guò)點(diǎn),且在點(diǎn)處的切線方程為.

1)求的解析式;

2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】進(jìn)入12月以業(yè),在華北地區(qū)連續(xù)出現(xiàn)兩次重污染天氣的嚴(yán)峻形勢(shì)下,我省堅(jiān)持保民生,保藍(lán)天,各地嚴(yán)格落實(shí)機(jī)動(dòng)車(chē)限行等一系列“管控令”,某市交通管理部門(mén)為了了解市民對(duì)“單雙號(hào)限行”的態(tài)度,隨機(jī)采訪了200名市民,將他們的意見(jiàn)和是否擁有私家車(chē)的情況進(jìn)行了統(tǒng)計(jì),得到如下的列聯(lián)表:

贊同限行

不贊同限行

合計(jì)

沒(méi)有私家車(chē)

90

20

110

有私家車(chē)

70

40

110

合計(jì)

160

60

220

(1)根據(jù)上面的列聯(lián)表判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“對(duì)限行的態(tài)度與是否擁有私家車(chē)有關(guān)”;

(2)為了了解限行之后是否對(duì)交通擁堵、環(huán)境染污起到改善作用,從上述調(diào)查的不贊同限行的人員中按是否擁有私家車(chē)分層抽樣抽取6人,再?gòu)倪@6人中隨機(jī)抽出3名進(jìn)行電話回訪,求3人中至少有1人沒(méi)有私家車(chē)的概率.

附: ,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)構(gòu)通過(guò)對(duì)某企業(yè)今年的生產(chǎn)經(jīng)營(yíng)情況的調(diào)查,得到每月利潤(rùn)(單位:萬(wàn)元)與相應(yīng)月份數(shù)的部分?jǐn)?shù)據(jù)如表:

1

4

7

12

229

244

241

196

(1)根據(jù)如表數(shù)據(jù),請(qǐng)從下列三個(gè)函數(shù)中選取一個(gè)恰當(dāng)?shù)暮瘮?shù)描述的變化關(guān)系,并說(shuō)明理由,,

(2)利用(1)中選擇的函數(shù),估計(jì)月利潤(rùn)最大的是第幾個(gè)月,并求出該月的利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右有頂點(diǎn)分別是,上頂點(diǎn)是,圓的圓心到直線的距離是,且橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合.

(Ⅰ)求橢圓的方程;

(Ⅱ)平行于軸的動(dòng)直線與橢圓和圓在第一象限內(nèi)的交點(diǎn)分別為、,直線、軸的交點(diǎn)記為.試判斷是否為定值,若是,證明你的結(jié)論.若不是,舉反例說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案