設(shè)兩個(gè)非零向量
e1
e2
,不共線,若
AB
=
e1
+2
e2
,
BC
=2
e1
+7
e2
CD
=3(
e1
+
e2
),試問(wèn):A、B、C、D四點(diǎn)中有沒(méi)有三點(diǎn)共線的情況?若有,是哪三點(diǎn),請(qǐng)說(shuō)明理由.
考點(diǎn):平面向量的基本定理及其意義,平行向量與共線向量
專題:平面向量及應(yīng)用
分析:利用向量的線性運(yùn)算、向量共線定理即可得出.
解答: 解:∵
BD
=
BC
+
CD
=2
e1
+7
e2
+3(
e1
+
e2
)=5(
e1
+2
e2
)
=5
AB
,∴A,B,D三點(diǎn)共線.
∵不存在實(shí)數(shù)k使得
AB
=k
BC
,因此A,B,C三點(diǎn)不共線.
點(diǎn)評(píng):本題考查了向量的線性運(yùn)算、向量共線定理,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)z=
a+4i
1+i
(a∈R),則在復(fù)平面內(nèi),“a<4”是“z對(duì)應(yīng)點(diǎn)在第一象限”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐A-BCD中,AB⊥平面BCD,BC⊥CD,∠CBD=60°,BC=2.
(Ⅰ)求證:平面ABC⊥平面ACD;
(Ⅱ)若E是BD的中點(diǎn),F(xiàn)為線段AC上的動(dòng)點(diǎn),EF與平面ABC所成的角記為θ,當(dāng)tanθ的最大值為
15
2
,求二面角A-CD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,過(guò)點(diǎn)A的圓與BC切于點(diǎn)D,且與AB、AC分別交于點(diǎn)E、F.已知AD為∠BAC的平分線,求證:EF∥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,O是△ABC內(nèi)一點(diǎn),PQ∥BC,且
PQ
BC
=t,
OA
=
a
,
OB
=
b
,
OC
=
c
,試用
a
,
b
,
c
表示
OP
OQ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,圓O是△ABC的外接圓,BA=m,BC=
m
4
,∠ABC=60°,若
BO
=x
BA
+y
BC
,則x+y的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx-(a+1)x+
1
2
x
2(a≥0),若直線l與曲線y=f(x)相切,切點(diǎn)是P(2,0),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式x2-2y2≤cx(y-x)對(duì)任意滿足x>y>0的實(shí)數(shù)x,y恒成立,則實(shí)數(shù)c的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(α+β)coaα-
1
2
[sin(2α+β)-cosβ]=
1
2
,0<β<π,則β=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案