已知函數(shù)處取得極值.
(1)求、的值;(2)求的單調(diào)區(qū)間.
(1),;(2)的單調(diào)增區(qū)間為的單調(diào)減區(qū)間為

試題分析:(1)對函數(shù)求導可得,函數(shù)在處取得極值,那么,,解關于的方程組可得到的值;(2)由(1)可得函數(shù)表達式為
,解可得函數(shù)遞增區(qū)間,解可得函數(shù)遞減速區(qū)間.
解:(1)由已知
因為處取得極值,
所以1和2是方程的兩根

(2)由(1)可得 

時,,是增加的;
時,,是減少的。
所以,的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)記的從小到大的第個零點,證明:對一切,有.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,其中e為自然對數(shù)的底數(shù).
(1)若是增函數(shù),求實數(shù)的取值范圍;
(2)當時,求函數(shù)上的最小值;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知y=f(x)是奇函數(shù),當x∈(0,2)時,f(x)=ln x-ax,當x∈(-2,0)時,f(x)的最小值為1,則a的值等于________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x2-(1+2a)x+aln x(a為常數(shù)).
(1)當a=-1時,求曲線y=f(x)在x=1處切線的方程;
(2)當a>0時,討論函數(shù)y=f(x)在區(qū)間(0,1)上的單調(diào)性,并寫出相應的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)在點處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù) 
(1)求在點處的切線方程;
(2)證明:曲線與曲線有唯一公共點;
(3)設,比較的大小, 并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(14分)(2011•陜西)設f(x)=lnx,g(x)=f(x)+f′(x).
(Ⅰ)求g(x)的單調(diào)區(qū)間和最小值;
(Ⅱ)討論g(x)與的大小關系;
(Ⅲ)求a的取值范圍,使得g(a)﹣g(x)<對任意x>0成立.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)若當時,函數(shù)的最大值為,求的值;
(2)設為函數(shù)的導函數(shù)),若函數(shù)上是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

同步練習冊答案