【題目】如圖,在直三棱柱中,,的中點(diǎn),.

1)求證:平面;

2)若異面直線所成角為,求四棱錐的體積.

【答案】1)證明見(jiàn)解析.(2

【解析】

(1)于點(diǎn),連.再根據(jù)中位線證明即可.

(2) 根據(jù)(1)可知或其補(bǔ)角為異面直線所成角,再判斷可得為等邊三角形,即可求得,再根據(jù)線面垂直的判定與性質(zhì)可得平面,繼而求得四棱錐的體積即可.

1)證明:如圖,連于點(diǎn),連.

因?yàn)橹比庵?/span>中,四邊形是矩形,故點(diǎn)中點(diǎn),

的中點(diǎn),故,

平面,平面,故平面.

2)解:由(1)知,又,故或其補(bǔ)角為異面直線所成角.

設(shè),則,,,故為等腰三角形,故,

為等邊三角形,則有,得到.

為等腰直角三角形,故,又平面,平面,

,又,故平面,

又梯形的面積,,

則四棱錐的體積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線,直線)與交于兩點(diǎn),的中點(diǎn),為坐標(biāo)原點(diǎn).

1)求直線斜率的最大值;

2)若點(diǎn)在直線上,且為等邊三角形,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在六棱錐中,底面是邊長(zhǎng)為的正六邊形,.

1)證明:平面平面;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以下統(tǒng)計(jì)表和分布圖取自《清華大學(xué)2019年畢業(yè)生就業(yè)質(zhì)量報(bào)告》.

則下列選項(xiàng)錯(cuò)誤的是(

A.清華大學(xué)2019年畢業(yè)生中,大多數(shù)本科生選擇繼續(xù)深造,大多數(shù)碩士生選擇就業(yè)

B.清華大學(xué)2019年畢業(yè)生中,碩士生的就業(yè)率比本科生高

C.清華大學(xué)2019年簽三方就業(yè)的畢業(yè)生中,本科生的就業(yè)城市比碩士生的就業(yè)城市分散

D.清華大學(xué)2019年簽三方就業(yè)的畢業(yè)生中,留北京人數(shù)超過(guò)一半

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】精準(zhǔn)扶貧點(diǎn)用2400元的資金為貧困戶(hù)購(gòu)買(mǎi)良種羊羔,共有肉用山羊、毛用綿羊、產(chǎn)奶山羊三種羊羔,價(jià)格均為每只300元,若要求每種羊羔至少買(mǎi)1只,則所有可能的購(gòu)買(mǎi)方案總數(shù)為( )

A.12B.14C.21D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列滿(mǎn)的前項(xiàng)和為,且滿(mǎn)足.數(shù)列滿(mǎn)足,.

1)求數(shù)列的通項(xiàng)公式;

2)記數(shù)列滿(mǎn)足設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和為,試比較的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,分別為,的中點(diǎn).

1)求證:平面;

2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若的極大值點(diǎn),求的取值范圍;.

2)當(dāng)時(shí),判斷軸交點(diǎn)個(gè)數(shù),并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020110日,中國(guó)工程院院士黃旭華和中國(guó)科學(xué)院院士曾慶存榮獲2019年度國(guó)家最高科學(xué)技術(shù)獎(jiǎng).曾慶存院士是國(guó)際數(shù)值天氣預(yù)報(bào)奠基人之一,他的算法是世界數(shù)值天氣預(yù)報(bào)核心技術(shù)的基礎(chǔ),在氣象預(yù)報(bào)中,過(guò)往的統(tǒng)計(jì)數(shù)據(jù)至關(guān)重要,如圖是根據(jù)甲地過(guò)去50年的氣象記錄所繪制的每年高溫天數(shù)(若某天氣溫達(dá)到35 ℃及以上,則稱(chēng)之為高溫天)的頻率分布直方圖.若某年的高溫天達(dá)到15天及以上,則稱(chēng)該年為高溫年,假設(shè)每年是否為高溫年相互獨(dú)立,以這50年中每年高溫天數(shù)的頻率作為今后每年是否為高溫年的概率.

1)求今后4年中,甲地至少有3年為高溫年的概率.

2)某同學(xué)在位于甲地的大學(xué)里勤工儉學(xué),成為了校內(nèi)奶茶店(消費(fèi)區(qū)在戶(hù)外)的店長(zhǎng),為了減少高溫年帶來(lái)的損失,該同學(xué)現(xiàn)在有兩種方案選擇:方案一:不購(gòu)買(mǎi)遮陽(yáng)傘,一旦某年為高溫年,則預(yù)計(jì)當(dāng)年的收入會(huì)減少6000元;方案二:購(gòu)買(mǎi)一些遮陽(yáng)傘,費(fèi)用為5000元,可使用4年,一旦某年為高溫年,則預(yù)計(jì)當(dāng)年的收入會(huì)增加1000.4年為期,試分析該同學(xué)是否應(yīng)該購(gòu)買(mǎi)遮陽(yáng)傘?

查看答案和解析>>

同步練習(xí)冊(cè)答案