【題目】如圖,在直三棱柱中,,,分別為的中點(diǎn).

1)求證:平面;

2)求點(diǎn)到平面的距離.

【答案】1)證明見(jiàn)解析;(2.

【解析】

1)連接,連接,,的中點(diǎn),可得,結(jié)合,得到四邊形為平行四邊形,則,再由線面平行的判定定理,可得平面;

2)由平面,點(diǎn)到平面的距離等于點(diǎn)到平面的距離,利用線面垂直的判定和性質(zhì)求得,從而可求出,利用等積法得,化簡(jiǎn)計(jì)算可求得點(diǎn)到平面的距離,從而得出點(diǎn)到平面的距離,即可得出結(jié)果.

解:(1)如圖,連接,交于點(diǎn),連接,

的中點(diǎn),

又∵的中點(diǎn),

,且.

又∵的中點(diǎn),

,且,

,

∴四邊形為平行四邊形,

,

又∵平面平面,

平面.

2)解:∵平面,

∴點(diǎn)到平面的距離等于點(diǎn)到平面的距離,

∵三棱柱為直三棱柱,

平面,平面,

,

,

,

,且

平面,即平面,

平面,∴,

,

,,

連接,則,

,

到底面的距離等于到底面的距離為,

設(shè)到平面的距離為,

的中點(diǎn),則到平面的距離為,

,∴,

∴點(diǎn)到平面的距離為,

即點(diǎn)到平面的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, 平面,四邊形是菱形, , ,且, 交于點(diǎn), 上任意一點(diǎn).

(1)求證: ;

(2)已知二面角的余弦值為,若的中點(diǎn),求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正四棱錐的底面邊長(zhǎng)為,側(cè)棱,E為側(cè)棱PB上一點(diǎn)且,在內(nèi)(包括邊界)任意取一點(diǎn)F,則的取值范圍為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,,的中點(diǎn),.

1)求證:平面

2)若異面直線所成角為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年春節(jié),一場(chǎng)突如其來(lái)的新型冠狀病毒感染的肺炎疫情,牽動(dòng)著我們每個(gè)人的心,嚴(yán)重?cái)_亂了大家的正常生活,在全國(guó)人民的共同努力下,疫情得到了有效的控制.已知某市A,B,C三個(gè)小區(qū)的志愿者人數(shù)分別為6040,20,現(xiàn)采用分層抽樣的方法從這120名志愿者中隨機(jī)抽取6人去支援夕陽(yáng)紅敬老院.若再?gòu)倪@6人中隨機(jī)抽取2名作為負(fù)責(zé)人,則這2名志愿者來(lái)自不同小區(qū)的概率是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記數(shù)列的前項(xiàng)和為,若存在實(shí)數(shù)H,使得對(duì)任意的,都有,則稱數(shù)列為“和有界數(shù)列”.下列說(shuō)法正確的是(

A.是等差數(shù)列,且公差,則是“和有界數(shù)列”

B.是等差數(shù)列,且是“和有界數(shù)列”,則公差

C.是等比數(shù)列,且公比,則是“和有界數(shù)列”

D.是等比數(shù)列,且是“和有界數(shù)列”,則的公比

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求f(x)的最大值;

2)設(shè)函數(shù),若對(duì)任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,求a的取值范圍;

3)若數(shù)列的各項(xiàng)均為正數(shù),,.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某度假酒店為了解會(huì)員對(duì)酒店的滿意度,從中抽取50名會(huì)員進(jìn)行調(diào)查,把會(huì)員對(duì)酒店的“住宿滿意度”與“餐飲滿意度”都分為五個(gè)評(píng)分標(biāo)準(zhǔn):1分(很不滿意);2分(不滿意);3分(一般);4分(滿意);5分(很滿意).其統(tǒng)計(jì)結(jié)果如下表(住宿滿意度為,餐飲滿意度為

(1)求“住宿滿意度”分?jǐn)?shù)的平均數(shù);

(2)求“住宿滿意度”為3分時(shí)的5個(gè)“餐飲滿意度”人數(shù)的方差;

(3)為提高對(duì)酒店的滿意度,現(xiàn)從的會(huì)員中隨機(jī)抽取2人征求意見(jiàn),求至少有1人的“住宿滿意度”為2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中e是自然對(duì)數(shù)的底數(shù),a,)在點(diǎn)處的切線方程是.

1)求函數(shù)的單調(diào)區(qū)間.

2)設(shè)函數(shù),若上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案