已知函數(shù).
(Ⅰ)求在處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若,求證:.
(Ⅰ);(Ⅱ)當(dāng),的單調(diào)增區(qū)間;當(dāng)時(shí),函數(shù) 的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是;(Ⅲ)詳見(jiàn)解析.
【解析】
試題分析:(Ⅰ)求出導(dǎo)數(shù)及切點(diǎn),利用直線的點(diǎn)斜式方程即可得切線方程.
(Ⅱ)將求導(dǎo),利用求得其遞增區(qū)間,求得其遞減區(qū)間.
在本題中,,由得:.當(dāng), 的單調(diào)增區(qū)間;
當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.
(Ⅲ)本題首先要考慮的是,所要證的不等式與函數(shù)有什么關(guān)系?待證不等式可做如下變形: ,最后這個(gè)不等式與有聯(lián)系嗎?我們往下看.
,所以在上是增函數(shù).
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030704193939657102/SYS201403070420473340288248_DA.files/image021.png">,所以
即從這兒可以看出,有點(diǎn)聯(lián)系了.同理,
所以,
與待證不等式比較,只要問(wèn)題就解決了,而這由重要不等式可證,從而問(wèn)題得證.
試題解析:(Ⅰ),,所以切線為:即 3分
(Ⅱ),
, 4分
,, 5分
當(dāng),的單調(diào)增區(qū)間; 6分
當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是. 8分
(Ⅲ),所以在上是增函數(shù), 上是減函數(shù)
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030704193939657102/SYS201403070420473340288248_DA.files/image021.png">,所以
即,同理.
所以
又因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030704193939657102/SYS201403070420473340288248_DA.files/image026.png">當(dāng)且僅當(dāng)“”時(shí),取等號(hào).
又,,
所以,所以,
所以:. 14分
考點(diǎn):1、導(dǎo)數(shù)的應(yīng)用;2、不等式的證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆內(nèi)蒙古巴市高一12月月考數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),求:
(1)求函數(shù)的最小正周期;
(2)求函數(shù)的最大值、最小值及取得最大值、最小值的
(3)求函數(shù)的單調(diào)遞增區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆貴州省高一5月月考數(shù)學(xué)試卷(解析版) 題型:解答題
(1)已知函數(shù),求函數(shù)在區(qū)間上的單調(diào)增區(qū)間;
(2)計(jì)算:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),
(Ⅰ)求函數(shù)的最大值和最小正周期;
(Ⅱ)設(shè)的內(nèi)角的對(duì)邊分別且,,若求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,試求函數(shù)在此區(qū)間上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:山西省2011學(xué)年高二期末考試數(shù)學(xué) 題型:解答題
(12分)已知函數(shù),求:
(1)函數(shù)y的最大值,最小值及最小正周期;
(2)函數(shù)y的單調(diào)遞增區(qū)間。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com