【題目】在的展開式中,求:
(1)二項(xiàng)式系數(shù)的和;
(2)各項(xiàng)系數(shù)的和;
(3)奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和與偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)和;
(4)奇數(shù)項(xiàng)系數(shù)和與偶數(shù)項(xiàng)系數(shù)和;
(5)的奇次項(xiàng)系數(shù)和與的偶次項(xiàng)系數(shù)和.
【答案】(1);(2)1;(3)奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為,偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為;(4)奇數(shù)項(xiàng)的系數(shù)和為,偶數(shù)項(xiàng)的系數(shù)和為;(5)的奇次項(xiàng)系數(shù)和為,的偶次項(xiàng)系數(shù)和為
【解析】
設(shè),各項(xiàng)系數(shù)和為,奇數(shù)項(xiàng)系數(shù)和為,偶數(shù)項(xiàng)系數(shù)和為,奇次項(xiàng)系數(shù)和為,偶次項(xiàng)系數(shù)和為,再利用二項(xiàng)式定理的概念和賦值法求出相關(guān)系數(shù)和即可.
設(shè),
各項(xiàng)系數(shù)和為,
奇數(shù)項(xiàng)系數(shù)和為,偶數(shù)項(xiàng)系數(shù)和為,
的奇次項(xiàng)系數(shù)和為,的偶次項(xiàng)系數(shù)和為
(1)二項(xiàng)式系數(shù)的和為;
(2)令,,則,
所以各項(xiàng)系數(shù)和為1;
(3)奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為,
偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為;
(4)由(2)知,①,取,,
則②,
所以奇數(shù)項(xiàng)的系數(shù)和,
偶數(shù)項(xiàng)的系數(shù)和;
(5)由(4)知,的奇次項(xiàng)系數(shù)和為,
的偶次項(xiàng)系數(shù)和為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某超市一年中各月份的收入與支出單位:萬元情況的條形統(tǒng)計(jì)圖已知利潤為收入與支出的差,即利潤收入一支出,則下列說法正確的是
A. 利潤最高的月份是2月份,且2月份的利潤為40萬元
B. 利潤最低的月份是5月份,且5月份的利潤為10萬元
C. 收入最少的月份的利潤也最少
D. 收入最少的月份的支出也最少
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線是圓心在極軸上且經(jīng)過極點(diǎn)的圓,射線與曲線交于點(diǎn).
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知極坐標(biāo)系中兩點(diǎn),,若、都在曲線上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣mx2,g(x)=+x,m∈R,令F(x)=f(x)+g(x).
(Ⅰ)當(dāng)m=時(shí),求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若關(guān)于x的不等式F(x)≤mx﹣1恒成立,求整數(shù)m的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點(diǎn)坐標(biāo)是,過點(diǎn)且垂直于長軸的直線交橢圓于兩點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),問三角形內(nèi)切圓面積是否存在最大值?若存在,請求出這個(gè)最大值及此時(shí)直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處的切線與直線平行.
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在上恰有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
(3)記函數(shù),設(shè)是函數(shù)的兩個(gè)極值點(diǎn),若,且恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個(gè)命題:①命題“若,則”的逆否命題為“若,則”;②“”是“”的充分不必要條件; ③若為假命題,則均為假命題;④對于命題使得,則為,均有.其中,真命題的個(gè)數(shù)是 ( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,,,,,平面平面ABC.
(1)求證:平面PBC;
(2)求二面角P-AC-B的余弦值;
(3)求直線BC與平面PAC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過去大多數(shù)人采用儲(chǔ)蓄的方式將錢儲(chǔ)蓄起來,以保證自己生活的穩(wěn)定,考慮到通貨膨脹的壓力,如果我們把所有的錢都用來儲(chǔ)蓄,這并不是一種很好的方式,隨著金融業(yè)的發(fā)展,普通人能夠使用的投資理財(cái)工具也多了起來,為了研究某種理財(cái)工具的使用情況,現(xiàn)對年齡段的人員進(jìn)行了調(diào)查研究,將各年齡段人數(shù)分成5組:,,,,,并整理得到頻率分布直方圖:
(1)求圖中的a值;
(2)采用分層抽樣的方法,從第二組、第三組、第四組中共抽取8人,則三個(gè)組中,各抽取多少人;
(3)由頻率分布直方圖,求所有被調(diào)查人員的平均年齡.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com