設(shè)函數(shù)f(x)=sin(2x+
π
3
),則下列結(jié)論正確的是(  )
A、f(x)的圖象關(guān)于直線x=
π
3
對稱
B、f(x)的圖象關(guān)于點(diǎn)(
π
4
,0)對稱
C、f(x)的最小正周期為
π
2
D、f(x)在[0,
π
12
]上為增函數(shù)
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:分別根據(jù)函數(shù)的對稱性,單調(diào)性和周期性的性質(zhì)進(jìn)行判斷即可得到結(jié)論.
解答: 解:A.f(
π
3
)=sin(2×
π
3
+
π
3
)=sinπ=0,不是最值,∴f(x)的圖象關(guān)于直線x=
π
3
對稱錯誤.
B.f(
π
4
)=sin(2×
π
4
+
π
3
)=cos
π
3
0,∴f(x)的圖象關(guān)于關(guān)于點(diǎn)(
π
4
,0)對稱,錯誤.
C.∵函數(shù)的周期T=
2
,∴函數(shù)的周期是π,∴C錯誤.
D.當(dāng)x∈[0,
π
12
]時,2x+
π
3
∈[
π
3
,
π
2
],此時函數(shù)f(x)單調(diào)遞增,∴D正確.
故選:D.
點(diǎn)評:本題主要考查三角函數(shù)的圖象和性質(zhì),要求熟練掌握函數(shù)的對稱性,周期性,單調(diào)性的性質(zhì)的判斷方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的公比q=2,其前4項(xiàng)和S4=60,則a2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|-1≤x<3},B={0,2,4,6},則A∩B等于( �。�
A、{0,2}
B、{-1,0,2}
C、{x|0≤x≤2}
D、{x|-1≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,且a≠1,則“函數(shù)y=logax在(0,+∞)上是減函數(shù)”是“函數(shù)y=(2-a)x3在R上是增函數(shù)”的( �。�
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平行四邊形ABCD中,AB=1,AD=
2
,且∠BAD=45°,以BD為折線,把△ABD折起,使平面ABD⊥平面BCD,連接AC.

(Ⅰ)求證:AB⊥DC;
(Ⅱ)求二面角B-AC-D的大�。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex
(Ⅰ)求函數(shù)h(x)=(x-k)f(x)(k∈R)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)g(x)=
a
f(x)
+x,a∈R,求g(x)
的極值.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�