已知函數(shù)f(x)=ex
(Ⅰ)求函數(shù)h(x)=(x-k)f(x)(k∈R)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)g(x)=
a
f(x)
+x,a∈R,求g(x)
的極值.
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問(wèn)題中的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求出函數(shù)f(x)的導(dǎo)函數(shù),令導(dǎo)函數(shù)大于0得到函數(shù)的遞增區(qū)間,令導(dǎo)函數(shù)小于0得到函數(shù)的遞減區(qū)間;
(Ⅱ)分類討論,求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,即可求出函數(shù)的極值.
解答: 解:(Ⅰ)∵函數(shù)h(x)=(x-k)ex(k∈R),
∴h′(x)=ex(x-k+1),
x≥k-1時(shí),h′(x)≥0;x<k-1時(shí),h′(x)<0;
∴函數(shù)h(x)的單調(diào)增區(qū)間為[k-1,+∞),單調(diào)減區(qū)間為(-∞,k-1];
(Ⅱ)由題意,g(x)=
a
ex
+x,則g′(x)=1-
a
ex
,
①a≤0時(shí),g′(x)>0,函數(shù)在R上為增函數(shù),∴函數(shù)無(wú)極值;
②a>0時(shí),令g′(x)=0,則x=lna,
∴x∈(-∞,lna)上單調(diào)遞減,在(lna,+∞)上單調(diào)遞增,
∴g(x)在x=lna處取得極小值,且極小值為g(lna)=lna+1,無(wú)極大值.
綜上,a≤0時(shí),函數(shù)無(wú)極值;a>0時(shí),g(x)在x=lna處取得極小值lna+1,無(wú)極大值.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,會(huì)熟練運(yùn)用導(dǎo)數(shù)解決函數(shù)的極值問(wèn)題.求函數(shù)的單調(diào)區(qū)間,應(yīng)該先求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)函數(shù)大于0得到函數(shù)的遞增區(qū)間,令導(dǎo)函數(shù)小于0得到函數(shù)的遞減區(qū)間.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=sin(2x+
π
3
),則下列結(jié)論正確的是( 。
A、f(x)的圖象關(guān)于直線x=
π
3
對(duì)稱
B、f(x)的圖象關(guān)于點(diǎn)(
π
4
,0)對(duì)稱
C、f(x)的最小正周期為
π
2
D、f(x)在[0,
π
12
]上為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ex-1
ex+1

(1)試判斷該函數(shù)的奇偶性,并加以證明;
(2)當(dāng)f(x)<a恒成立時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-lnx-1,若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)函數(shù)g(x)=f(x)-m(x-1)(m∈R)恰有兩個(gè)零點(diǎn)x1,x2(x1<x2).
   (i)求函數(shù)g(x)的單調(diào)區(qū)間及實(shí)數(shù)m的取值范圍;
   (ii)求證:g′(
x1+x2
2
)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0且a≠1,f(x)=
a
a2-1
(ax-a-x
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)的單調(diào)性,并證明;
(3)當(dāng)函數(shù)f(x)的定義域?yàn)椋?1,1)時(shí),求使f(1-m)+f(1-m2)<0成立的實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=2,4Sn=anan+1,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
1
an2
}
與的前n項(xiàng)和為Tn,求證:
n
4n+4
Tn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)的和為Sn,a5+a6=11,S4=10.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知數(shù)列{bn}是首項(xiàng)為1,公比為2的等比數(shù)列,求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2a2lnx(a>0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)記函數(shù)f(x)的最小值為M,求證:M≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若正數(shù)a,b滿足ab=a+b+3,則分別求ab,a+b的取值范圍
(2)若x>0,求函數(shù)f(x)=
12
x
+3x的最小值;若x<0,求函數(shù)f(x)=
12
x
+3x的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案