(2013•大興區(qū)一模)已知數(shù)列{a
n}的各項(xiàng)均為正整數(shù),且a
1<a
2<…<a
n,設(shè)集合A
k={x|x=
n |
|
i=1 |
λ
ia
i,λ
i=-1或λ
i=0,或λ
i=1}(1≤k≤n).
性質(zhì)1:若對(duì)于?x∈A
k,存在唯一一組λ
i,(i=1,2,…,k)使x=
n |
|
i=1 |
λ
ia
i成立,則稱數(shù)列{a
n}為完備數(shù)列,當(dāng)k取最大值時(shí)稱數(shù)列{a
n}為k階完備數(shù)列.
性質(zhì)2:若記m
k=
n |
|
i=1 |
a
i(1≤k≤n),且對(duì)于任意|x|≤m
k,k∈Z,都有x∈A
K成立,則稱數(shù)列P{a
n}為完整數(shù)列,當(dāng)k取最大值時(shí)稱數(shù)列{a
n}為k階完整數(shù)列.
性質(zhì)3:若數(shù)列{a
n}同時(shí)具有性質(zhì)1及性質(zhì)2,則稱此數(shù)列{a
n}為完美數(shù)列,當(dāng)K取最大值時(shí){a
n}稱為K階完美數(shù)列;
(Ⅰ)若數(shù)列{a
n}的通項(xiàng)公式為a
n=2n-1,求集合A
2,并指出{a
n}分別為幾階完備數(shù)列,幾階完整數(shù)列,幾階完美數(shù)列;
(Ⅱ)若數(shù)列{a
n}的通項(xiàng)公式為a
n=10
n-1,求證:數(shù)列{a
n}為n階完備數(shù)列,并求出集合A
n中所有元素的和S
n.
(Ⅲ)若數(shù)列{a
n}為n階完美數(shù)列,試寫出集合A
n,并求數(shù)列{a
n}通項(xiàng)公式.