loga(x+4)≤2x,x∈[0,1]恒成立,求a的取值范圍.
考點(diǎn):函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:由x的范圍求出2x的范圍,然后分a>1和0<a<1求出loga(x+4)的最大值,由loga(x+4)的最大值小于2x的最小值得a的取值范圍.
解答: 解:當(dāng)x∈[0,1]時,2x∈[1,2],
x+4∈[4,5],
當(dāng)a>1時,loga(x+4)的最大值為loga5,
由loga5≤1,得a≥5;
當(dāng)0<a<1時,loga(x+4)的最大值為loga4,
由loga4≤1,得0<a<1.
綜上,a的取值范圍是(0,1)∪[5,+∞).
點(diǎn)評:本題考查了函數(shù)恒成立問題,考查了指數(shù)函數(shù)和對數(shù)函數(shù)值域的求法,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:|x|-x>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=x2+bx與指數(shù)函數(shù)y=bx的圖象只可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)|x|≤
π
4
,求函數(shù)f(x)=cos(2x+
π
4
)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線G:x2=4y;
(Ⅰ)過點(diǎn)P(2,1)作拋物線G的切線,求切線方程;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2)是拋物線G上異于原點(diǎn)的兩動點(diǎn),其中x1>x2>0,以A,B為直徑的圓恰好過拋物線的焦點(diǎn)F,延長AF,BF分別交拋物線G于C,D兩點(diǎn),若四邊形ABCD的面積為32,求直線AC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程是
x=t-
1
t
y=t+
1
t
,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρsin(θ+
π
6
)=1,則兩曲線交點(diǎn)間的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p<0)過點(diǎn)A(-1,-2).
(1)求拋物線C的方程,并求其準(zhǔn)線方程;
(2)過該拋物線的焦點(diǎn),作傾斜角為120°的直線,交拋物線于A、B兩點(diǎn),求線段AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
4
x2+sin(
π
2
+x),f′(x)為f(x)的導(dǎo)函數(shù),則f′(x)的圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于數(shù)列{un},若存在常數(shù)M>0對任意n∈N*恒有:|un+1-un|+|un-un-1|+…+|u2-u1|≤M,則稱{un}是B-數(shù)列.
(1)首項(xiàng)為1,公比為-
1
2
的等比數(shù)列是否是B-數(shù)列?請說明理由.
(2)若數(shù)列{an}是B-數(shù)列,
①證明:{an2}也是B-數(shù)列;
②令A(yù)n=
a1+a2+…+an
n
,求證:數(shù)列{An}是B-數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案