如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點(diǎn),動點(diǎn)P在線段MN上運(yùn)動時,下列四個結(jié)論中恒成立的個數(shù)為( 。
(1)EP⊥AC; 
(2)EP∥BD;
(3)EP∥面SBD;
(4)EP⊥面SAC.
分析:如圖所示,連接AC、BD相交于點(diǎn)O,連接EM,EN.
(1)由正四棱錐S-ABCD,可得SO⊥底面ABCD,AC⊥BD,進(jìn)而得到SO⊥AC.
可得AC⊥平面SBD.由已知E,M,N分別是BC,CD,SC的中點(diǎn),利用三角形的中位線可得EM∥BD,MN∥SD,于是平面EMN∥平面SBD,進(jìn)而得到AC⊥平面EMN,AC⊥EP.
(2)由異面直線的定義可知:EP與BD是異面直線,因此不可能EP∥BD;
(3)由(1)可知:平面EMN∥平面SBD,可得EP∥平面SBD;
(4)由(1)同理可得:EM⊥平面SAC,可用反證法證明:當(dāng)P與M不重合時,EP與平面SAC不垂直.
解答:解:如圖所示,連接AC、BD相交于點(diǎn)O,連接EM,EN.
(1)由正四棱錐S-ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.
∵SO∩BD=O,∴AC⊥平面SBD,
∵E,M,N分別是BC,CD,SC的中點(diǎn),∴EM∥BD,MN∥SD,而EM∩MN=N,
∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正確.
(2)由異面直線的定義可知:EP與BD是異面直線,不可能EP∥BD,因此不正確;
(3)由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此正確.
(4)由(1)同理可得:EM⊥平面SAC,若EP⊥平面SAC,則EP∥EM,與EP∩EM=E相矛盾,因此當(dāng)P與M不重合時,EP與平面SAC不垂直.即不正確.
綜上可知:只有(1)(3)正確.即四個結(jié)論中恒成立的個數(shù)是2.
故選B.
點(diǎn)評:熟練掌握線面、面面的位置關(guān)系判定定理是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正四棱錐S-ABCD中,E是BC的中點(diǎn),P點(diǎn)在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動,并且總是保持PE⊥AC.則動點(diǎn)P的軌跡與△SCD組成的相關(guān)圖形是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在正四棱錐S-ABCD中,AB=8
2
,SA=10,M、N、O分別是SA、SB、BD的中點(diǎn).
(1)設(shè)P是OC的中點(diǎn),證明:PN∥平面BMD;
(2)求直線SO與平面BMD所成角的大。
(3)在△ABC內(nèi)是否存在一點(diǎn)G,使NG⊥平面BMD,若存在,求線段NG的長度;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省淮安市漣水縣鄭梁梅高中高一(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,在正四棱錐S-ABCD中,E是BC的中點(diǎn),P點(diǎn)在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動,并且總是保持PE⊥AC.則動點(diǎn)P的軌跡與△SCD組成的相關(guān)圖形是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年遼寧省沈陽市東北育才學(xué)校高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

如圖,在正四棱錐S-ABCD中,E是BC的中點(diǎn),P點(diǎn)在側(cè)面△SCD內(nèi)及其邊界上運(yùn)動,并且總是保持PE⊥AC.則動點(diǎn)P的軌跡與△SCD組成的相關(guān)圖形是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案