練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
PD。
(I)證明:PQ⊥平面DCQ;
(II)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
是兩個不同的平面,m,n是兩條不同的直線,給出下列命題:
①若
;
②②若
;
③如果
相交;
④若
其中正確的命題是 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題共14分)
如圖,在四面體
中,
點
分別是棱
的中點。
(Ⅰ)求證:
平面
;
(Ⅱ)求證:四邊形
為矩形;
(Ⅲ)是否存在點
,到四面體
六條棱的中點 的距離相等?說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
是三個相互平行的平面,平面
之間的距離為
,平面
之間的距離為
.直線
與
分別交于
.那么
是
的 ( )
A.充分不必要條件 | B.必要不充分條件 |
C.充分必要條件 | D.既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分 )如圖,在等腰直角
中,
,
,
,
為垂足.沿
將
對折,連結(jié)
、
,使得
.
(1)對折后,在線段
上是否存在點
,使
?若存在,求出
的長;若不存在,說明理由;
(2)對折后,求二面角
的平面角的大。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
((本小題滿分12分)
如圖,在四棱錐
P—ABCD中,
底面
ABCD,底面為直角梯形,
,
且
AD=2,
AB=BC=1,
PA=
(Ⅰ)設(shè)
M為
PD的中點,求證:
平面
PAB;
(Ⅱ)若二面角
B—PC—D的大小為150°,求此四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
((本小題滿分12分)
如圖,在四棱錐
中,底面
是矩形.已知
.
(1)證明
平面
;
(2)求異面直線
與
所成的角的大;
(3)求二面角
的大。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
((本小題滿分12分)如圖,直三棱柱
中,AB⊥BC,D為AC的中點,
。
(1)求證:
∥平面
;
(2)若四棱柱
的體積為2,求二面角
的正切值。
查看答案和解析>>