(本小題滿分12分)
如圖,在四棱錐
P-
ABCD中,則面
PAD⊥底面
ABCD,側(cè)棱
PA=
PD=
,底面
ABCD為直角梯形,其中
BC∥
AD,
AB⊥
AD,
AD=2
AB=2
BC=2,
O為
AD中點。
(Ⅰ)求證:
PO⊥平面
ABCD;
(Ⅱ)求異面直線
PD與
CD所成角的大。
(Ⅲ)線段
AD上是否存在點
Q,使得它到平面
PCD的距離為
?若存在,求出
的值;若不存在,請說明理由。
(Ⅰ)證明見解析。
(Ⅱ)
(Ⅲ)
,理由見解析。
解法一:
(Ⅰ)證明:在△
PAD中
PA=
PD,
O為
AD中點,所以
PO⊥
AD,
又側(cè)面
PAD⊥底面
ABCD,平面
平面
ABCD=
AD,
平面
PAD,
所以
PO⊥平面
ABCD。
(Ⅱ)連結(jié)
BO,在直角梯形
ABCD中、
BC∥
AD,
AD=2
AB=2
BC,
有
OD∥
BC且
OD=
BC,所以四邊形
OBCD是平行四邊形,
所以
OB∥
DC。
由(Ⅰ)知,
PO⊥
OB,∠
PBO為銳角,
所以∠
PBO是異面直線
PB與
CD所成的角。
因為
AD=2
AB=2
BC=2,在Rt△
AOB中,
AB=1,
AO=1,
所以
OB=
,
在Rt△
POA中,因為
AP=
,
AO=1,所以
OP=1,
在Rt△
PBO中,tan∠
PBO=
。
(Ⅲ)假設(shè)存在點
Q,使得它到平面
PCD的距離為
。
設(shè)
QD=
x,則
,由(Ⅱ)得
CD=
OB=
,
在Rt△
POC中,
所以
PC=
CD=
DP,
由
Vp-DQC=VQ-PCD,得2,所以存在點
Q滿足題意,此時
。
解法二:
(Ⅰ)同解法一.
(Ⅱ)以
O為坐標原點,
的方向分別為
x軸、
y軸、
z軸的正方向,建立空間直角坐標系
O-xyz,依題意,易得
A(0,-1,0),
B(1,-1,0),
C(1,0,0),
D(0,1,0),
P(0,0,1),
所以
所以異面直線
PB與
CD所成的角是arccos
,
(Ⅲ)假設(shè)存在點
Q,使得它到平面
PCD的距離為
,
由(Ⅱ)知
設(shè)平面
PCD的法向量為
n=(
x0,
y0,
z0).
則
所以
即
,
取
x0=1,得平面
PCD的一個法向量為
n=(1,1,1).
設(shè)
由
,得
解
y=-
或
y=
(舍去),
此時
,所以存在點
Q滿足題意,此時
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
三棱錐P-ABC中,三側(cè)棱PA、PB、PC兩兩相互垂直,三側(cè)面面積分
別為S1、S2、S3,底面積為S,三側(cè)面與底面分別成角α、β、γ,(1)求S(用S1、S2、S3表示);(2)求證:cos2α+cos2β+cos2γ=1;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)如圖,四棱錐
中,側(cè)面PDC是邊長為2的正三角形,且與底面
垂直,底面ABCD是面積為
的菱形,
為銳角,M為PB的中點。
(1)求證
(2)求二面角
的大小
(3)求P到平面
的距離
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
矩形ABCD與矩形ABEF的公共邊為AB,且平面ABCD
平面ABEF,如圖所示,F(xiàn)D
, AD=1, EF=
.
(Ⅰ)證明:AE
平面FCB;
(Ⅱ)求異面直線BD與AE所成角的余弦值
(Ⅲ)若M是棱AB的中點,在線段FD上是否存在一點N,使得MN∥平面FCB?
證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知四邊形
為菱形,
,兩個正三棱錐
(底面是正三角形且頂點在底面上的射影是底面正三角形的中心)的側(cè)棱長都相等,點
分別在
上,且
.
(Ⅰ)求證:
;
(Ⅱ)求平面
與底面
所成銳二面角的平面角的正切值;
(Ⅲ)求多面體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖1,一個正四棱柱形的密閉容器底部鑲嵌了同底的正四棱錐形實心裝飾塊,容器內(nèi)盛有
升水時,水面恰好經(jīng)過正四棱錐的頂點
P。如果將容器倒置,水面也恰好過點
(圖2)。有下列四個命題:
A.正四棱錐的高等于正四棱柱高的一半 |
B.將容器側(cè)面水平放置時,水面也恰好過點 |
C.任意擺放該容器,當水面靜止時,水面都恰好經(jīng)過點 |
D.若往容器內(nèi)再注入升水,則容器恰好能裝滿 |
其中真命題的代號是:
(寫出所有真命題的代號)。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在北緯
緯線上有A,B兩點,設(shè)該緯線圈上A,B兩點的劣弧長為
,(R為地球半徑),則A,B兩點間的球面距離為__________________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知直線
,直線
,給出下列命題
①
∥
;②
∥
m;③
∥
;④
∥
.
其中正確命題的序號是( )
查看答案和解析>>