18.計算:(0.25)-0.5+8${\;}^{\frac{2}{3}}}$-2log525=2.

分析 直接根據(jù)指數(shù)冪和對數(shù)的運算性質(zhì)計算即可.

解答 解:原式=0.52×(-0.5)+${2}^{3×\frac{2}{3}}$-4=2+4-4=2,
故答案為:2

點評 本題考查了指數(shù)冪和對數(shù)的運算性質(zhì),屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

8.已知點(3,9)在函數(shù)f(x)=1+ax的圖象上,則log${\;}_{\frac{1}{4}}$a+loga8=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.樣本容量為100的頻率分布直方圖如圖所示,則樣本數(shù)據(jù)落在[14,18]內(nèi)的頻數(shù)為( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.設a∈R,已知函數(shù)f(x)=ax3-3x2
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設g(x)=f(x)+f′(x),若?x∈[1,3],有g(shù)(x)≤0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設f(x)=$\frac{-{2}^{x}+a}{{2}^{x+1}+b}$(a>0,b>0).
(1)當a=b=1時,證明:f(x)不是奇函數(shù);
(2)設f(x)是奇函數(shù),求a與b的值;
(3)在(2)的條件下,試證明函數(shù)f(x)的單調(diào)性,并解不等式f(1-m)+f(1+m2)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.等差數(shù)列{an}中,a4+a6=16,則數(shù)列前9項和S9的值為( 。
A.144B.54C.60D.72

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.“x<0”是“$\frac{1}{x}$<1”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知復數(shù)z1=1+i,z2=1+bi,i為虛數(shù)單位,若$\frac{z_1}{z_2}$為純虛數(shù),則實數(shù)b的值是( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.計算:0.0081${\;}^{\frac{1}{4}}$+(4${\;}^{-\frac{3}{4}}$)2+($\sqrt{8}$)${\;}^{-\frac{4}{3}}$-16-0.75+2${\;}^{lo{g}_{2}5}$.

查看答案和解析>>

同步練習冊答案