【題目】在平面直角坐標(biāo)系xOy 中,橢圓G的中心為坐標(biāo)原點(diǎn),左焦點(diǎn)為F1(﹣1,0),離心率e=

(1)求橢圓G 的標(biāo)準(zhǔn)方程;

(2)已知直線(xiàn)l1:y=kx+m1與橢圓G交于 A,B兩點(diǎn),直線(xiàn)l2:y=kx+m2(m1≠m2)與橢圓G交于C,D兩點(diǎn),且|AB|=|CD|,如圖所示.

①證明:m1+m2=0;

②求四邊形ABCD 的面積S 的最大值.

【答案】(1) (2)①見(jiàn)解析②

【解析】試題分析:(1)由焦點(diǎn)坐標(biāo)及離心率可求得,即可求橢圓G 的標(biāo)準(zhǔn)方程;(2)①利用弦長(zhǎng)公式及韋達(dá)定理,表示出由,由得到;②四邊形是平行四邊形,設(shè)間的距離,由,即可.

試題解析:(1)設(shè)橢圓G的方程為(a>b>0)

∵左焦點(diǎn)為F1(﹣1,0),離心率e=.∴c=1,a=,

b2=a2﹣c2=1

橢圓G 的標(biāo)準(zhǔn)方程為:

(2)設(shè)A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4

①證明:由消去y得(1+2k2)x2+4km1x+2m12﹣2=0

x1+x2=,x1x2=;

|AB|==2

同理|CD|=2,

由|AB|=|CD|得2=2,

∵m1≠m2,∴m1+m2=0

②四邊形ABCD 是平行四邊形,設(shè)AB,CD間的距離d=

∵m1+m2=0,∴

∴s=|AB|×d=2×

=.

所以當(dāng)2k2+1=2m12時(shí),四邊形ABCD 的面積S 的最大值為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】曲線(xiàn)的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.

(1)寫(xiě)出的直角坐標(biāo)方程,并且用 (為直線(xiàn)的傾斜角, 為參數(shù))的形式寫(xiě)出直線(xiàn)的一個(gè)參數(shù)方程;

(2) 是否相交,若相交求出兩交點(diǎn)的距離,若不相交,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定投擲飛鏢3次為一輪,若3次中至少兩次投中8環(huán)以上為優(yōu)秀,現(xiàn)采用隨機(jī)模擬實(shí)驗(yàn)的方法估計(jì)某人投擲飛鏢的情況:先由計(jì)算器產(chǎn)生隨機(jī)數(shù)0或1,用0表示該次投標(biāo)未在8環(huán)以上,用1表示該次投標(biāo)在8環(huán)以上;再以每三個(gè)隨機(jī)數(shù)作為一組,代表一輪的結(jié)果,經(jīng)隨機(jī)模擬實(shí)驗(yàn)產(chǎn)生了如下20組隨機(jī)數(shù):

101 111 011 101 010 100 100 011 111 110

000 011 010 001 111 011 100 000 101 101

據(jù)此估計(jì),該選手投擲飛鏢三輪,至少有一輪可以拿到優(yōu)秀的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一生物科研小組對(duì)升高溫度的多少與某種細(xì)菌種群存活數(shù)量之間的關(guān)系進(jìn)行分析研究,他們制作5 份相同的樣本并編號(hào)1、2、3、4、5,分別記錄它們同在下升高不同的溫度后的種群存活數(shù)量, 得到如下資料:

(1)若隨機(jī)選取2份樣本的數(shù)據(jù)來(lái)研究,求其編號(hào)不相鄰的概率;

(2)求出關(guān)于的線(xiàn)性回歸方程;

(3)利用(2)中所求出的回歸方程預(yù)測(cè)溫度升高15 時(shí)此種樣本中種菌群存活數(shù)量.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1, 中, ,點(diǎn)為線(xiàn)段的四等分點(diǎn),線(xiàn)段互相平行,現(xiàn)沿折疊得到圖2所示的幾何體,此幾何體的底面為正方形.

(1)證明: 四點(diǎn)共面;(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= x3 (a∈R).
(1)若a=1,求函數(shù)f(x)在[0,2]上的最大值;
(2)若對(duì)任意x∈(0,+∞),有f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (其中a>0,a為常數(shù)),求函數(shù)f(x)的零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn)M(﹣ ),N是圓C:(x﹣ 2+y2=16(C為圓心) 上的動(dòng)點(diǎn),MN的垂直平分線(xiàn)與NC交于點(diǎn)E.
(1)求動(dòng)點(diǎn)E的軌跡方程C1
(2)直線(xiàn)l與軌跡C1交于P,Q兩點(diǎn),與拋物線(xiàn)C2:x2=4y交于A,B兩點(diǎn),且拋物線(xiàn)C2在點(diǎn)A,B處的切線(xiàn)垂直相交于S,設(shè)點(diǎn)S到直線(xiàn)l的距離為d,試問(wèn):是否存在直線(xiàn)l,使得d= ?若存在,求直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a>0, 是R上的偶函數(shù).
(1)求a的值;
(2)證明f(x)在(0,+∞)上為增函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案