【題目】設(shè)函數(shù)的定義域?yàn)镈,如果,使得成立,則稱(chēng)函數(shù)為“Ω函數(shù)”. 給出下列四個(gè)函數(shù):①;②;③;④, 則其中“Ω函數(shù)”共有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
【答案】C
【解析】
試題分析:若x∈D,y∈D,使得f(x)=-f(y)成立,即等價(jià)為x∈D,y∈D,使得f(x)+f(y)=0成立.
A.函數(shù)的定義域?yàn)镽,∵y=sinx是奇函數(shù),
∴f(-x)=-f(x),即f(x)+f(-x)=0,∴當(dāng)y=-x時(shí),等式(x)+f(y)=0成立,∴A為“Ω函數(shù)”.
B.∵f(x)=2x>0,∴,則等式(x)+f(y)=0不成立,∴B不是“Ω函數(shù)”.
C.函數(shù)的定義域?yàn)?/span>{x|x≠1},由(x)+f(y)=0得,即,
∴x+y-2=0,即y=2-x,當(dāng)x≠1時(shí),y≠1,∴當(dāng)y=2-x時(shí),等式(x)+f(y)=0成立,∴C為“Ω函數(shù)”.
D.函數(shù)的定義域?yàn)椋?,+∞),由(x)+f(y)=0得lnx+lny=ln(xy)=0,即xy=1,即當(dāng)y= 時(shí),等式(x)+f(y)=0成立,∴D為“Ω函數(shù)”.
綜上滿(mǎn)足條件的函數(shù)是A,C,D,共3個(gè)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題“奇函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱(chēng)”的否命題是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是 ( )
A. 多面體至少有四個(gè)面
B. 九棱柱有9條側(cè)棱,9個(gè)側(cè)面,側(cè)面為平行四邊形
C. 長(zhǎng)方體、正方體都是棱柱
D. 三棱柱的側(cè)面為三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值是________,最小值是________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù),存在,,使得成立成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)P(4,-3)且在坐標(biāo)軸上截距相等的直線(xiàn)有 ( )
A. 1條 B. 2條 C. 3條 D. 4條
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了比較兩種治療失眠癥的藥(分別稱(chēng)為A藥,B藥)的療效,隨機(jī)地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時(shí)間后,記錄他們?nèi)掌骄黾拥乃邥r(shí)間(單位:h),試驗(yàn)的觀測(cè)結(jié)果如下:
服用A藥的20位患者日平均增加的睡眠時(shí)間:
服用B藥的20位患者日平均增加的睡眠時(shí)間:
(Ⅰ)分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪種藥的療效更好?
(Ⅱ)根據(jù)兩組數(shù)據(jù)完成下面莖葉圖,從莖葉圖看,哪種藥的療效更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),若存在,使成立,則稱(chēng)為的
不動(dòng)點(diǎn).已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求的取值范圍;
(3)在(2)的條件下,若f(x)的兩個(gè)不動(dòng)點(diǎn)為,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某小區(qū)準(zhǔn)備將一塊閑置的直角三角形(其中)土地開(kāi)發(fā)成公共綠地,設(shè)計(jì)時(shí),要求綠地部分(圖中陰影部分)有公共綠地走道,且兩邊是兩個(gè)關(guān)于走道對(duì)稱(chēng)的三角形(和),現(xiàn)考慮方便和綠地最大化原則,要求點(diǎn)與點(diǎn)不重合,點(diǎn)落在邊上,設(shè).
(1)若,綠地“最美”,求最美綠地的面積;
(2)為方便小區(qū)居民行走,設(shè)計(jì)時(shí)要求最短,求此時(shí)公共綠地走道的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com