【題目】設(shè)函數(shù)的定義域?yàn)镈,如果,使得成立,則稱函數(shù)“Ω函數(shù). 給出下列四個(gè)函數(shù):;;, 則其中“Ω函數(shù)共有(

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

【答案】C

【解析】

試題分析:xD,yD,使得fx=-fy)成立,即等價(jià)為xD,yD,使得fx+fy=0成立.

A.函數(shù)的定義域?yàn)镽,y=sinx是奇函數(shù),

f(-x)=-f(x),即f(x)+f(-x)=0,當(dāng)y=-x時(shí),等式(x)+f(y)=0成立,A為“Ω函數(shù)

B.f(x)=2x>0,,則等式(x)+f(y)=0不成立,B不是“Ω函數(shù)

C.函數(shù)的定義域?yàn)?/span>{x|x1},由(x+fy=0,即

x+y-2=0,即y=2-x,當(dāng)x1時(shí),y1,當(dāng)y=2-x時(shí),等式(x)+f(y)=0成立,C為“Ω函數(shù)

D.函數(shù)的定義域?yàn)椋?,+),由(x)+f(y)=0得lnx+lny=ln(xy)=0,即xy=1,即當(dāng)y= 時(shí),等式(x)+f(y)=0成立,D為“Ω函數(shù)

綜上滿足條件的函數(shù)是A,C,D,共3個(gè)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題“奇函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱”的否命題__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法錯(cuò)誤的是 (  )

A. 多面體至少有四個(gè)面

B. 九棱柱有9條側(cè)棱,9個(gè)側(cè)面側(cè)面為平行四邊形

C. 長(zhǎng)方體、正方體都是棱柱

D. 三棱柱的側(cè)面為三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=x3-3x+1在閉區(qū)間[-3,0]上的最大值是________,最小值是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)函數(shù),存在,使得成立成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)P(4,-3)且在坐標(biāo)軸上截距相等的直線有 (  )

A. 1條 B. 2條 C. 3條 D. 4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了比較兩種治療失眠癥的藥分別稱為A藥,B藥的療效,隨機(jī)地選取20位患者服用A藥,20位患者服用B藥,這40位患者在服用一段時(shí)間后,記錄他們?nèi)掌骄黾拥乃邥r(shí)間單位:h,試驗(yàn)的觀測(cè)結(jié)果如下:

服用A藥的20位患者日平均增加的睡眠時(shí)間:

服用B藥的20位患者日平均增加的睡眠時(shí)間:

分別計(jì)算兩組數(shù)據(jù)的平均數(shù),從計(jì)算結(jié)果看,哪種藥的療效更好?

根據(jù)兩組數(shù)據(jù)完成下面莖葉圖,從莖葉圖看,哪種藥的療效更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若存在,使成立,則稱

不動(dòng)點(diǎn).已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);

(2)若對(duì)任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求的取值范圍;

(3)在(2)的條件下,若fx)的兩個(gè)不動(dòng)點(diǎn)為,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某小區(qū)準(zhǔn)備將一塊閑置的直角三角形(其中)土地開發(fā)成公共綠地,設(shè)計(jì)時(shí),要求綠地部分(圖中陰影部分)有公共綠地走道,且兩邊是兩個(gè)關(guān)于走道對(duì)稱的三角形(),現(xiàn)考慮方便和綠地最大化原則,要求點(diǎn)與點(diǎn)不重合,點(diǎn)落在邊上,設(shè)

(1)若,綠地最美,求最美綠地的面積;

(2)為方便小區(qū)居民行走,設(shè)計(jì)時(shí)要求最短,求此時(shí)公共綠地走道的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案