在△ABC中,已知,sinB=cosA•sinC,S△ABC=6,P為線段AB上的一點,且,則的最小值為( )
A.
B.
C.
D.
【答案】分析:△ABC中設(shè)AB=c,BC=a,AC=b,由sinB=cosA•sinC結(jié)合三角形的內(nèi)角和及和角的正弦公式化簡可求 cosC=0 即C=90°,再由,S△ABC=6可得bccosA=9,可求得c=5,b=3,a=4,考慮建立以AC所在的直線為x軸,以BC所在的直線為y軸建立直角坐標系,由P為線段AB上的一點,則存在實數(shù)λ使得=(3λ,4-4λ)(0≤λ≤1),設(shè),由=(x,0)+(0,y)=(x,y)可得x=3λ,y=4-4λ則4x+3y=12而,利用基本不等式求解最小值.
解答:解:△ABC中設(shè)AB=c,BC=a,AC=b
∵sinB=cosA•sinC∴sin(A+C)=sinCcosnA
即sinAcosC+sinCcosA=sinCcosA
∴sinAcosC=0∵sinA≠0∴cosC=0 C=90°
,S△ABC=6
∴bccosA=9,
,根據(jù)直角三角形可得sinA=,cosA=,bc=15
∴c=5,b=3,a=4
以AC所在的直線為x軸,以BC所在的直線為y軸建立直角坐標系可得C(0,0)A(3,0)B(0,4)
P為線段AB上的一點,則存在實數(shù)λ使得=(3λ,4-4λ)(0≤λ≤1)
設(shè)
=(x,0)+(0,y)=(x,y)
∴x=3λ,y=4-4λ則4x+3y=12
=
故所求的最小值為
故選:C
點評:題是一道構(gòu)思非常巧妙的試題,綜合考查了三角形的內(nèi)角和定理、兩角和的正弦公式及基本不等式求解最值問題,解題的關(guān)鍵是理解把已知所給的是一個單位向量,從而可用x,y表示,建立x,y與λ的關(guān)系,解決本題的第二個關(guān)鍵點在于由x=3λ,y=4-4λ發(fā)現(xiàn)4x+3y=12為定值,從而考慮利用基本不等式求解最小值
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A=30°,B=120°,b=12,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知b=
2
,c=1,B=45°,求a,A,C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知高AN和BM所在直線方程分別為x+5y-3=0和x+y-1=0,邊AB所在直線方程x+3y-1=0,求直線BC,CA及AB邊上的高所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知lgsinA-lgcosB-lgsinC=lg2,則三角形一定是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知b=1,c=3,A=120°,則a=
 

查看答案和解析>>

同步練習(xí)冊答案