【題目】函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若,求證:
.
【答案】(Ⅰ)a≤0時(shí),的單調(diào)遞減區(qū)間是
;
時(shí),
的單調(diào)遞減區(qū)間是
,
的單調(diào)遞增區(qū)間是
.(Ⅱ) 證明見解析.
【解析】試題分析:
(1)求出導(dǎo)數(shù),根據(jù)對的分類討論,找到導(dǎo)數(shù)正負(fù)區(qū)間,即可求出;
(2)求出函數(shù)的最小值,轉(zhuǎn)化為證≥
,構(gòu)造
,求其最小值,即可解決問題.
試題解析:
(Ⅰ).
當(dāng)a≤0時(shí),,則
在
上單調(diào)遞減;當(dāng)
時(shí),由
解得
,由
解得
.
即在
上單調(diào)遞減;
在
上單調(diào)遞增;
綜上,a≤0時(shí),的單調(diào)遞減區(qū)間是
;
時(shí),
的單調(diào)遞減區(qū)間是
,
的單調(diào)遞增區(qū)間是
.
(Ⅱ) 由(Ⅰ)知在
上單調(diào)遞減;
在
上單調(diào)遞增,
則.
要證≥
,即證
≥
,即
+
≥0,
即證≥
.構(gòu)造函數(shù)
,則
,
由解得
,由
解得
,
即在
上單調(diào)遞減;
在
上單調(diào)遞增;
∴ ,
即≥0成立.從而
≥
成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】美國對中國芯片的技術(shù)封鎖激發(fā)了中國“芯”的研究熱潮.某公司研發(fā)的,
兩種芯片都已經(jīng)獲得成功.該公司研發(fā)芯片已經(jīng)耗費(fèi)資金
千萬元,現(xiàn)在準(zhǔn)備投入資金進(jìn)行生產(chǎn).經(jīng)市場調(diào)查與預(yù)測,生產(chǎn)
芯片的毛收入與投入的資金成正比,已知每投入
千萬元,公司獲得毛收入
千萬元;生產(chǎn)
芯片的毛收入
(千萬元)與投入的資金
(千萬元)的函數(shù)關(guān)系為
,其圖像如圖所示.
(1)試分別求出生產(chǎn),
兩種芯片的毛收入
(千萬元)與投入資金
(千萬元)的函數(shù)關(guān)系式;
(2)現(xiàn)在公司準(zhǔn)備投入億元資金同時(shí)生產(chǎn)
,
兩種芯片,求可以獲得的最大利潤是多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(
)的焦點(diǎn)分別為
,
,離心率
,過左焦點(diǎn)的直線與橢圓交于
,
兩點(diǎn),
,且
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線
與橢圓有兩個(gè)不同的交點(diǎn)
,
,且點(diǎn)
在點(diǎn)
,
之間,試求
和
面積之比的取值范圍(其中
為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知直線2x﹣y﹣1=0與直線x﹣2y+1=0交于點(diǎn)P.
(Ⅰ)求過點(diǎn)P且平行于直線3x+4y﹣15=0的直線的方程;(結(jié)果寫成直線方程的一般式)
(Ⅱ)求過點(diǎn)P并且在兩坐標(biāo)軸上截距相等的直線方程(結(jié)果寫成直線方程的一般式)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知五面體ABCDEF中,四邊形CDEF為矩形,,CD=2DE=2AD=2AB=4,AC=
,
.
(1)求證:AB平面ADE;
(2)求平面EBC與平面BCF所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,
,
,
,
,
,
分別在
,
上,
,現(xiàn)將四邊形
沿
折起,使平面
平面
.
(Ⅰ)若,在折疊后的線段
上是否存在一點(diǎn)
,且
,使得
平面
?若存在,求出
的值;若不存在,說明理由;
(Ⅱ)當(dāng)三棱錐的體積最大時(shí),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求經(jīng)過點(diǎn)P(4,1),且在兩坐標(biāo)軸上的截距相等的直線方程.
(2)設(shè)直線y=x+2a與圓C:x2+y2-2ay-2=0相交于A,B兩點(diǎn),若|AB|=2,求圓C的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中點(diǎn).
(1)求證:AE⊥B1C;
(2)求異面直線AE與A1C所成的角的大。
(3)若G為C1C中點(diǎn),求二面角C-AG-E的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com