【題目】美國對中國芯片的技術封鎖激發(fā)了中國“芯”的研究熱潮.某公司研發(fā)的兩種芯片都已經(jīng)獲得成功.該公司研發(fā)芯片已經(jīng)耗費資金千萬元,現(xiàn)在準備投入資金進行生產(chǎn).經(jīng)市場調(diào)查與預測,生產(chǎn)芯片的毛收入與投入的資金成正比,已知每投入千萬元,公司獲得毛收入千萬元;生產(chǎn)芯片的毛收入(千萬元)與投入的資金(千萬元)的函數(shù)關系為,其圖像如圖所示.

1)試分別求出生產(chǎn),兩種芯片的毛收入(千萬元)與投入資金(千萬元)的函數(shù)關系式;

2)現(xiàn)在公司準備投入億元資金同時生產(chǎn),兩種芯片,求可以獲得的最大利潤是多少.

【答案】1)對于芯片,毛收入與投入的資金關系為:;對于芯片,毛收入與投入的資金關系為:.(2)9千萬元.

【解析】

1)對于芯片,

可設,利用題設條件可求,對于芯片,根據(jù)圖象可得關于的方程,解方程后可得函數(shù)的解析式.

2)設對芯片投入資金(千萬元),則對芯片投入資金(千萬元),則利潤,利用換元法可求該函數(shù)的最大值.

1)因為生產(chǎn)芯片的毛收入與投入的資金成正比,故設

因為每投入千萬元,公司獲得毛收入千萬元,故,所以,

因此對于芯片,毛收入與投入的資金關系為:.

對于芯片,由圖像可知,,故.

因此對于芯片,毛收入與投入的資金關系為:.

2)設對芯片投入資金(千萬元),則對芯片投入資金(千萬元),

假設利潤為,則利潤.

,則

(千萬元)時,有最大利潤為(千萬元).

答:當對芯片投入億,對芯片投入千萬元時,有最大利潤千萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了解學生寒假期間學習情況,學校對某班男、女學生學習時間進行調(diào)查,學習時間按整小時統(tǒng)計,調(diào)查結(jié)果繪成折線圖如下:

(1)已知該校有名學生,試估計全校學生中,每天學習不足小時的人數(shù).

(2)若從學習時間不少于小時的學生中選取人,設選到的男生人數(shù)為,求隨機變量的分布列.

(3)試比較男生學習時間的方差與女生學習時間方差的大小.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從1到7的7個數(shù)字中取兩個偶數(shù)和三個奇數(shù)組成沒有重復數(shù)字的五位數(shù).

試問:(1)能組成多少個不同的五位偶數(shù)?

(2)五位數(shù)中,兩個偶數(shù)排在一起的有幾個?

(3)兩個偶數(shù)不相鄰且三個奇數(shù)也不相鄰的五位數(shù)有幾個?(所有結(jié)果均用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果直線與橢圓只有一個交點,稱該直線為橢圓的“切線”.已知橢圓,點是橢圓上的任意一點,直線過點且是橢圓的“切線”.

(1)證明:過橢圓上的點的“切線”方程是;

(2)設是橢圓長軸上的兩個端點,點不在坐標軸上,直線,分別交軸于點,,過的橢圓的“切線”軸于點,證明:點是線段的中點;

(3)點不在軸上,記橢圓的兩個焦點分別為,判斷過的橢圓的“切線”與直線,所成夾角是否相等?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(管道構成Rt△FHE,H是直角項點)來處理污水.管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F(xiàn)分別落在線段BC,AD上.已知AB=20米,AD=米,記∠BHE=

(1)試將污水凈化管道的長度L表示為的函數(shù),并寫出定義域;

(2)當取何值時,污水凈化效果最好?并求出此時管道的長度L.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn),當圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術,利用割圓術劉徽得到了圓周率精確到小數(shù)點后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術設計的程序框圖,則輸出的n值為 (參考數(shù)據(jù):)

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】玉山一中籃球體育測試要求學生完成“立定投籃”和“三步上籃”兩項測試,“立定投籃”和“三步上籃”各有2次投籃機會,先進行“立定投籃”測試,如果合格才能參加“三步上籃”測試.為了節(jié)約時間,每項測試只需且必須投中一次即為合格.小華同學“立定投籃”和“三步上籃”的命中率均為.假設小華不放棄任何一次投籃機會且每次投籃是否命中相互獨立.

(1)求小華同學兩項測試均合格的概率;

(2)設測試過程中小華投籃次數(shù)為X,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦點與雙曲線的焦點重合,過橢圓的右頂點任意作直線,交拋物線兩點,且,其中為坐標原點.

(1)試求橢圓的方程;

(2)過橢圓的左焦點作互相垂直的兩條直線,分別交橢圓于點、、、,試求四邊形的面積的取值范圍.

查看答案和解析>>

同步練習冊答案