17.函數(shù)f(x)=4x3+k•$\root{3}{x}$+1(k∈R),若f(2)=8,則f(-2)的值為( 。
A.-6B.-7C.6D.7

分析 由已知得f(2)=4×$8+k•\root{3}{2}$+1=8,從而得到$k•\root{3}{2}$=-25,由此能求出f(-2).

解答 解:∵f(x)=4x3+k•$\root{3}{x}$+1(k∈R),f(2)=8,
∴f(2)=4×$8+k•\root{3}{2}$+1=8,
解得$k•\root{3}{2}$=-25,
∴f(-2)=4×(-8)+k•$\root{3}{-2}$+1
=-32-$k•\root{3}{2}$+1
=-32-(-25)+1=-6.
故選:A.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在等差數(shù)列{an}中,a3=k,a9=12.
(1)當(dāng)k=6時(shí),求數(shù)列{an}的前n項(xiàng)和為Sn;
(2)若bn=n2+6an且對于任意n∈N*,恒有bn+1>bn成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在三棱錐P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F(xiàn)分別是AQ,BQ,AP,BP的中點(diǎn),AQ=2BD,PD與EQ交于點(diǎn)G,PC與FQ交于點(diǎn)H,連接GH.
(1)證明:AB∥GH;
(2)求平面ABQ與平面EFQ所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將兩個(gè)數(shù)a=5,b=23交換,使a=23,b=5,下面語句正確的一組是( 。
A.a=b b=aB.c=b b=a  a=cC.b=a a=bD.a=c c=b b=a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=x5+x3,x∈[-2,2],且f(m)+f(m-1)>0,則實(shí)數(shù)m的范圍是( 。
A.($\frac{1}{2}$,+∞)B.($\frac{1}{2}$,2]C.[-1,$\frac{1}{2}$)D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直線l的方程為y=$\frac{1}{2}$x+1,則l的斜率為(  )
A.$\frac{1}{2}$B.-2C.2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知H是球O的直徑AB上一點(diǎn),AH:HB=1:3,AB⊥平面α,H為垂足,α截球O所得截面的面積為π,則球O的半徑為$\frac{4\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.用秦九昭算法計(jì)算多項(xiàng)式f(x)=2x6+5x5+6x4+23x3-8x2+10x-3,x=-4時(shí),V3的值為( 。
A.-742B.-49C.18D.188

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)為偶函數(shù),且f(x+2)=-f(x),當(dāng)-2≤x≤0時(shí),f(x)=2x;若n∈N*,an=f(n),則a2017等于(  )
A.2017B.-8C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案