11.已知三棱錐P-ABC內(nèi)接于球O,PA=PB=PC=2,三棱錐P-ABC的三個側(cè)面的面積之和最大時,球O的表面積為12π.

分析 三棱錐P-ABC的三條側(cè)棱PA、PB、PC兩兩互相垂直,三棱錐P-ABC的三個側(cè)面的面積之和最大,它的外接球就是它擴(kuò)展為長方體的外接球,求出長方體的對角線的長,就是球的直徑,然后求球的表面積.

解答 解:由題意三棱錐P-ABC的三條側(cè)棱PA、PB、PC兩兩互相垂直,
三棱錐P-ABC的三個側(cè)面的面積之和最大,
三棱錐P-ABC的外接球就是它擴(kuò)展為正方體的外接球,求出正方體的對角線的長:2$\sqrt{3}$
所以球的直徑是2$\sqrt{3}$,半徑為$\sqrt{3}$,
球的表面積:4π×$(\sqrt{3})^{2}$=12π.
故答案為:12π.

點(diǎn)評 本題考查球的表面積,幾何體的外接球,考查空間想象能力,計算能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=asinxcosx-sin2x+$\frac{1}{2}$的一條對稱軸方程為x=$\frac{π}{6}$,則函數(shù)f(x)的最大值為( 。
A.1B.±1C.$\sqrt{2}$D.$±\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知平面α和平面β的法向量分別為$\overrightarrow{m}$=(3,1,-5),$\overrightarrow{n}$=(-6,-2,10),則( 。
A.α⊥βB.α∥β
C.α與β相交但不垂直D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若函數(shù)f(x)=x|x+a|+b為奇函數(shù),則a為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)變量x,y滿足|x-a|+|y-a|≤1,若2x-y的最大值為5,則實(shí)數(shù)a的值為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xOy中,以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線C1的極坐標(biāo)方程為ρcosθ-ρsinθ+1=0,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+2cosα}\\{y=\sqrt{3}+2sinα}\end{array}\right.$(α為參數(shù)).
(1)求直線C1的直角坐標(biāo)方程和圓C2的圓心的極坐標(biāo);
(2)設(shè)直線C1和圓C2的交點(diǎn)為A,B,求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=-2sin(2x+$\frac{π}{6}$),則f(0)=-1,最小正周期是π,f (x)的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(文科做)已知a,b,c分別是△ABC的角A,B,C的對邊,且b2=a2+c2+ac.
(1)若b=$\sqrt{21}$,S△ABC=$\sqrt{3}$,求a的值;
(2)求$\frac{{bsin({{{30}°}-C})}}{a-c}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知不等式x2-2x-3<0的解集為A,不等式x2+x-6<0的解集為B.
(1)求A∩B;
(2)若不等式x2+ax+b<0的解集為A∩B,求a、b的值.

查看答案和解析>>

同步練習(xí)冊答案