16.在直角坐標(biāo)系xOy中,以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知直線C1的極坐標(biāo)方程為ρcosθ-ρsinθ+1=0,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+2cosα}\\{y=\sqrt{3}+2sinα}\end{array}\right.$(α為參數(shù)).
(1)求直線C1的直角坐標(biāo)方程和圓C2的圓心的極坐標(biāo);
(2)設(shè)直線C1和圓C2的交點為A,B,求線段AB的長.

分析 (1)利用極坐標(biāo)與直角坐標(biāo)的互化方法,可得直線C1的直角坐標(biāo)方程和圓C2的圓心的極坐標(biāo);
(2)求出圓心到直線的距離,利用勾股定理,求線段AB的長.

解答 解:(1)∵直線C1的極坐標(biāo)方程為ρcosθ-ρsinθ+1=0,
∴直線C1的直角坐標(biāo)方程為x-y+1=0;
∵曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+2cosα}\\{y=\sqrt{3}+2sinα}\end{array}\right.$(α為參數(shù)),
∴普通方程為(x+1)2+(y-$\sqrt{3}$)2=4,
∴圓C2的圓心的直角坐標(biāo)為(-1,$\sqrt{3}$),極坐標(biāo)(2,$\frac{2π}{3}$);
(2)設(shè)直線C1和圓C2的交點為A,B,(-1,$\sqrt{3}$)到直線x-y+1=0的距離d=$\frac{|-1-\sqrt{3}+1|}{\sqrt{2}}$=$\frac{\sqrt{3}}{\sqrt{2}}$,
∴線段AB的長2$\sqrt{4-\frac{3}{2}}$=$\sqrt{10}$.

點評 本題考查了圓的極坐標(biāo)方程、參數(shù)方程、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC中,角A,B,C所對的邊為a,b,c.若a=2,$\frac{tanA}{tanB}$=$\frac{4}{3}$,則△ABC面積的最大值為$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x)定義城為(0,+∞)上的減函數(shù),且f($\frac{x}{y}$)=f(x)-f(y)(x,y∈R+),f(2)=1.
(1)求證:f(4)=2;
(2)求滿足f(x-1)-f($\frac{1}{x+6}$)≥3的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.復(fù)數(shù)z1=cosx-isinx,z2=sinx-icosx,則|z1•z2|=( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知三棱錐P-ABC內(nèi)接于球O,PA=PB=PC=2,三棱錐P-ABC的三個側(cè)面的面積之和最大時,球O的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,角A,B,C所對的邊分別為a,b,c滿足A=$\frac{π}{3}$,$\overrightarrow{AB}•\overrightarrow{BC}$>0,a=$\frac{\sqrt{3}}{2}$,則b+c的取值范圍是( 。
A.(1,$\frac{3}{2}$)B.($\frac{1}{2}$,$\frac{3}{2}$]C.($\frac{1}{2}$,$\frac{3}{2}$)D.($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=Atan(ωx+φ)$(ω>0,|φ|<\frac{π}{2})$,y=f(x)的部分圖象如圖,則$f(\frac{π}{24})$=( 。│
A.2+$\sqrt{3}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.2-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.為了抽查某城市汽車年檢情況,在該城市主干道上采取抽車牌個位數(shù)為6的汽車檢查,這種抽樣方法是( 。
A.簡單隨機(jī)抽樣B.抽簽法C.系統(tǒng)抽樣D.分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.對于任意的實數(shù)m∈[0,1],mx2-2x-m≥2,則x的取值范圍是(-∞,-1].

查看答案和解析>>

同步練習(xí)冊答案