【題目】已知函數(shù).

1)求的單調(diào)區(qū)間;

2)若處取得極值,直線(xiàn)的圖象有三個(gè)不同的交點(diǎn),求的取值范圍.的極大值為1,求的值.

【答案】1)當(dāng)時(shí),的單調(diào)增區(qū)間為;當(dāng)時(shí),的單調(diào)增區(qū)間為,,單調(diào)減區(qū)間為;(2,.

【解析】

1)求得函數(shù)的導(dǎo)數(shù),分類(lèi)討論,即可求得函數(shù)的單調(diào)區(qū)間;

2)由處取得極值,求得,進(jìn)而求得函數(shù)的單調(diào)性與極值,結(jié)合直線(xiàn)與函數(shù)的圖象有三個(gè)不同的交點(diǎn),列出不等式,即可求解,

1)由題意,函數(shù),則,

當(dāng)時(shí),對(duì),有,

所以當(dāng)時(shí),的單調(diào)增區(qū)間為,

當(dāng)時(shí),由,解得,

,解得,

所以當(dāng)時(shí),的單調(diào)增區(qū)間為,,

的單調(diào)減區(qū)間為.

2)因?yàn)?/span>處取得極值,

所以,所以.

所以,.

,解得,.

由(1),可得函數(shù)的單調(diào)增區(qū)間為,,的單調(diào)減區(qū)間為

所以函數(shù)處取得極大值,在處取得極小值.

因?yàn)橹本(xiàn)與函數(shù)的圖象有三個(gè)不同的交點(diǎn),

結(jié)合的單調(diào)性,可得,

即實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線(xiàn)的參數(shù)方程為:,(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程為

1)求曲線(xiàn)和直線(xiàn)l的直角坐標(biāo)方程;

2)若點(diǎn)在曲線(xiàn)上,且點(diǎn)到直線(xiàn)l的距離最小,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

求不等式的解集;

若函數(shù)的最小值為,整數(shù)、滿(mǎn)足,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓軸負(fù)半軸交于,離心率.

1)求橢圓的方程;

2)若過(guò)點(diǎn)的直線(xiàn)與曲線(xiàn)交于,兩點(diǎn),過(guò)點(diǎn)且與直線(xiàn)垂直的直線(xiàn)與直線(xiàn)相交于點(diǎn),求的取值范圍及取得最小值時(shí)直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為,,點(diǎn)在橢圓上,且面積的最大值為,周長(zhǎng)為6.

1)求橢圓的方程,并求橢圓的離心率;

2)已知直線(xiàn)與橢圓交于不同的兩點(diǎn),若在軸上存在點(diǎn),使得中點(diǎn)的連線(xiàn)與直線(xiàn)垂直,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:

求分?jǐn)?shù)在[120,130)內(nèi)的頻率,并補(bǔ)全這個(gè)頻

率分布直方圖;

統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)

值作為代表,據(jù)此估計(jì)本次考試的平均分;

(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2個(gè),求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)是平面和平面的交線(xiàn),異面直線(xiàn),分別在平面和平面內(nèi).

命題:直線(xiàn),中至多有一條與直線(xiàn)相交;

命題:直線(xiàn),中至少有一條與直線(xiàn)相交;

命題:直線(xiàn),都不與直線(xiàn)相交.

則下列命題中是真命題的為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,平面,四邊形是矩形,且,,是線(xiàn)段上的動(dòng)點(diǎn),是線(xiàn)段的中點(diǎn).

1)求證:平面

2)若直線(xiàn)與平面所成角為,

①求線(xiàn)段的長(zhǎng);

②求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中, ,平面平面

Ⅰ)求證: ;

Ⅱ)在線(xiàn)段上是否存在點(diǎn),使直線(xiàn)與平面所成的角為?若存在,求的值,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案