若兔子和狐貍的生態(tài)模型為
Rn=1.1Rn-1-0.3Fn-1
Fn=0.2Rn-1+0.4Fn-1
(n≥1),對初始群α0=
R0
F0
=
100
50
,討論第n年種群數(shù)量αn及當(dāng)n越來越大時,種群數(shù)量αn的變化趨勢.
分析:欲討論第n年種群數(shù)量αn及當(dāng)n越來越大時,種群數(shù)量αn的變化趨勢,根據(jù)兔子和狐貍的生態(tài)模型可知,只須求出αn=Mnα0,關(guān)鍵是求出Mn,故先求出矩陣M的特征向量,再利用特征向量進(jìn)行計算即可.
解答:解:αn=
Rn
Fn
M=
1.1-0.3
0.20.4
,αn=Mαn-1=M(Mαn-2)=M2αn-2═Mnα0
M的特征值λ1=1,對應(yīng)的特征向量α1=
3
1
,λ2=0.5

對應(yīng)的特征向量
α2=
1
2
α0=
R0
F0
=
100
50
=30
3
1
+10
1
2

=30α1+10α2,αn=Mnα0=30λ1nα1+10λ2nα2
=30
3
1
+10×(0.5)n
1
2
=
90+10×(0.5)n
30+20×(0.5)n
,
當(dāng)n越來越大時,(0.5)n趨向于0,
αn趨向于
90
30
,即兔子和狐貍的數(shù)量趨于穩(wěn)定在90和30.
點評:本題主要考查了矩陣特征值與特征向量的計算及應(yīng)用等基礎(chǔ)知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若兔子和狐貍的生態(tài)模型為
Rn=1.1Rn-1-0.3Fn-1
Fn=0.2Rn-1+0.4Fn-1
(n≥1),對初始群α0=
R0
F0
=
100
50
,討論第n年種群數(shù)量αn及當(dāng)n越來越大時,種群數(shù)量αn的變化趨勢.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若兔子和狐貍的生態(tài)模型為(n≥1),對初始群α0==,討論第n年種群數(shù)量αn及當(dāng)n越來越大時,種群數(shù)量αn的變化趨勢.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年江蘇省揚州中學(xué)高考數(shù)學(xué)四模試卷(解析版) 題型:解答題

若兔子和狐貍的生態(tài)模型為(n≥1),對初始群,討論第n年種群數(shù)量αn及當(dāng)n越來越大時,種群數(shù)量αn的變化趨勢.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省連云港市高考數(shù)學(xué)模擬試卷(5)(解析版) 題型:解答題

若兔子和狐貍的生態(tài)模型為(n≥1),對初始群,討論第n年種群數(shù)量αn及當(dāng)n越來越大時,種群數(shù)量αn的變化趨勢.

查看答案和解析>>

同步練習(xí)冊答案