【題目】已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,在x=0處的切線與直線3x+y=0平行.
(1)求f(x)的解析式;
(2)已知點(diǎn)A(2,m),求過點(diǎn)A的曲線y=f(x)的切線條數(shù).
【答案】(1)f(x)=x3-3x;(2)①當(dāng)m>2或m<-6時,方程m=-2t3+6t2-6只有一解,即過點(diǎn)A只有一條切線;②當(dāng)m=2或m=-6時,方程m=-2t3+6t2-6恰有兩解,即過點(diǎn)A有兩條切線;③當(dāng)-6<m<2時,方程m=-2t3+6t2-6有三解,即過點(diǎn)A有三條切線.
【解析】
試題分析:(1)求導(dǎo),利用進(jìn)行求解;(2)設(shè)出切點(diǎn)坐標(biāo),利用導(dǎo)數(shù)的幾何意義求其斜率,寫出切線方程,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究極值,再通過數(shù)形結(jié)合思想求解.
試題解析:(1)f′(x)=3ax2+2bx+c,
由題意可得解得所以f(x)=x3-3x.
(2)設(shè)切點(diǎn)為(t,t3-3t),由(1)知f′(x)=3x2-3,所以切線斜率k=3t2-3,
切線方程為y-(t3-3t)=(3t2-3)(x-t).
又切線過點(diǎn)A(2,m),代入得m-(t3-3t)=(3t2-3)(2-t),解得m=-2t3+6t2-6.
設(shè)g(t)=-2t3+6t2-6,令g′(t)=0,即-6t2+12t=0,解得t=0或t=2.
當(dāng)t變化時,g′(t)與g(t)的變化情況如下表:
t | (-∞,0) | 0 | (0,2) | 2 | (2,+∞) |
g′(t) | - | 0 | + | 0 | - |
g(t) | ↘ | 極小值 | ↗ | 極大值 | ↘ |
所以g(t)的極小值為g(0)=-6,極大值為g(2)=2.
p>作出函數(shù)草圖可知:①當(dāng)m>2或m<-6時,方程m=-2t3+6t2-6只有一解,即過點(diǎn)A只有一條切線;
②當(dāng)m=2或m=-6時,方程m=-2t3+6t2-6恰有兩解,即過點(diǎn)A有兩條切線;
③當(dāng)-6<m<2時,方程m=-2t3+6t2-6有三解,即過點(diǎn)A有三條切線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)在上的最大值和最小值;
(2)設(shè),且對于任意的,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時,可全部租出.若每輛車的月租金每增加50元,未租出的車將會增加一輛,租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車的月租金定位3600元時,能租出多少輛車?
(2)當(dāng)每輛車的月租金定位多少元時,租賃公司的月收益最大,最大月收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為考查某種疫苗預(yù)防疾病的效果,進(jìn)行動物實(shí)驗(yàn),得到統(tǒng)計數(shù)據(jù)如下:
現(xiàn)從所有實(shí)驗(yàn)動物中任取一只,取到“注射疫苗”動物的概率為.
(1)求2×2列聯(lián)表中的數(shù)據(jù),,,的值;
(2)繪制發(fā)病率的條形統(tǒng)計圖,并判斷疫苗是否有效?
(3)能夠有多大把握認(rèn)為疫苗有效?
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)滿足以下兩個條件:
①不等式的解集是;②函數(shù)在上的最小值是3.
(1)求的解析式;
(2)若點(diǎn)()在函數(shù)的圖象上,且.
(i)求證:數(shù)列為等比數(shù)列;
(ii)令,是否存在正整數(shù),使得取到最小值?若有,請求出的值;若無,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市出租車的計價標(biāo)準(zhǔn)是4 km以內(nèi)10元(含4 km),超過4 km且不超過18 km的部分1.5元/km,超出18 km的部分2元/km.
(1)如果不計等待時間的費(fèi)用,建立車費(fèi)y元與行車?yán)锍?/span>x km的函數(shù)關(guān)系式;
(2)如果某人乘車行駛了30 km,他要付多少車費(fèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班有學(xué)生60人,現(xiàn)將所有學(xué)生按1,2, 3,…,60隨機(jī)編號,若采用系統(tǒng)抽樣的方法抽取一個容量為4的樣本(等距抽樣),已知編號為3, 33, 48號學(xué)生在樣本中,則樣本中另一個學(xué)生的編號為( )
A. 28 B. 23 C. 18 D. 13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個命題與它的逆命題,否命題,逆否命題這四個命題中( )
A. 假命題與真命題的個數(shù)相同
B. 真命題的個數(shù)是奇數(shù)
C. 真命題的個數(shù)是偶數(shù)
D. 假命題的個數(shù)是奇數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)用定義證明:在R上是單調(diào)減函數(shù);
(2)若是奇函數(shù),求值;
(3)在(2)的條件下,解不等式
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com