17.已知平面直角坐標系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=rcosθ+2\\ y=rsinθ+2\end{array}$(θ為參數(shù),r>0).以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為$\sqrt{2}$ρsin(θ+$\frac{π}{4}$)+1=0.
(1)求圓C的圓心的極坐標;
(2)當圓C與直線l有公共點時,求r的取值范圍.

分析 (1)消去參數(shù),得圓C的普通方程,即可求圓C的圓心的極坐標;
(2)當圓C與直線l有公共點時,圓心(2,2)到直線l的距離為$d=\frac{|2+2+1|}{{\sqrt{2}}}=\frac{5}{2}\sqrt{2}$≤r,即可求r的取值范圍.

解答 解:(1)由$C:\left\{\begin{array}{l}x=rcosθ+2\\ y=rsinθ+2\end{array}\right.$得(x-2)2+(y-2)2=r2,
∴曲線C是以(2,2)為圓心,r為半徑的圓,
∴圓心的極坐標為$(2\sqrt{2},\frac{π}{4})$…(5分)
(2)由$l:\sqrt{2}ρsin(θ+\frac{π}{4})+1=0$得l:x+y+1=0,
從而圓心(2,2)到直線l的距離為$d=\frac{|2+2+1|}{{\sqrt{2}}}=\frac{5}{2}\sqrt{2}$,
∵圓C與直線l有公共點,∴d≤r,即$r≥\frac{5}{2}\sqrt{2}$…(10分)

點評 本題考查圓的參數(shù)方程,考查極坐標方程與直角坐標方程的互化,考查直線與圓的位置關系,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.在△ABC中,cosA=$\frac{13}{14}$,7a=3b,則B=$\frac{π}{3}$或$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設x∈R且x≠0,則“x>1”是“x+$\frac{1}{x}$>2”成立的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.計算:
(1)(-$\frac{7}{8}$)0+($\frac{1}{8}$)${\;}^{\frac{1}{3}}$+$\root{4}{(3-\sqrt{10})^{4}}$;
(2)5${\;}^{lo{g}_{5}2}$+lg22+lg5•lg2+lg5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}2x-1,x>0\\{x^2}+x,x≤0\end{array}$,若函數(shù)g(x)=f(x)-m有三個零點,則實數(shù)m的取值范圍是$(-\frac{1}{4},0]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.復數(shù)$\frac{2+i}{1+i}$的共扼復數(shù)是( 。
A.-$\frac{3}{2}$+$\frac{1}{2}$iB.-$\frac{3}{2}$-$\frac{1}{2}$iC.$\frac{3}{2}$-$\frac{1}{2}$iD.$\frac{3}{2}$+$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知三棱錐P-ABC中,PA=AB=AC=1,PA⊥面ABC,∠BAC=$\frac{2π}{3}$,則三棱錐P-ABC的外接球的表面積為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列命題中,正確命題的個數(shù)是( 。
①若2b=a+c,則a,b,c成等差數(shù)列;
②“a,b,c成等比數(shù)列”的充要條件是“b2=ac”;
③若數(shù)列{an2}是等比數(shù)列,則數(shù)列{an}也是等比數(shù)列;
④若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.體育場南側有4個大門,北側有3個大門,某人到該體育場晨練,則他進、出的方案有(  )
A.7種B.12種C.14種D.49種

查看答案和解析>>

同步練習冊答案