19.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x={t^2}\\ y=t\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2+2ρcosθ-4=0.
(Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)求C1與C2交點的極坐標(biāo)(ρ≥0,0≤θ<2π).

分析 (Ⅰ)把把C1的參數(shù)方程先消去參數(shù)化為直角坐標(biāo)方程,再化為極坐標(biāo)方程.
(Ⅱ)把曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程,先求出它們的交點的直角坐標(biāo),再把它化為極坐標(biāo).

解答 解:(Ⅰ)把C1的參數(shù)方程$\left\{\begin{array}{l}x={t^2}\\ y=t\end{array}\right.$(t為參數(shù)),先消去參數(shù)化為直角坐標(biāo)方程為x=y2,化為極坐標(biāo)方程為ρcosθ=(ρsinθ)2
(Ⅱ)曲線C2的極坐標(biāo)方程為ρ2+2ρcosθ-4=0化為直角坐標(biāo)方程為x2+y2+2x-4=0,即 (x+1)2+y2=5,
由$\left\{\begin{array}{l}{{y}^{2}=x}\\{{(x+1)}^{2}{+y}^{2}=5}\end{array}\right.$,求得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$ 或 $\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$,C1與C2交點的直角坐標(biāo)為(1,1)或(1,-1),
再把它們化為極坐標(biāo)為($\sqrt{2}$,$\frac{π}{4}$)或($\sqrt{2}$,$\frac{7π}{4}$).

點評 本題主要考查把參數(shù)方程、極坐標(biāo)方程與直角坐標(biāo)方程的互化,求兩條曲線的交點,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),f(x)的圖象如圖所示,則不等式f′(x)f(x)<0的解集為( 。
A.(1,2)∪($\frac{5}{2}$,3)∪(-∞,-1)B.(-∞,-1)∪($\frac{5}{2}$,3)C.(-∞,-1)∪(3,+∞)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知球O與正四棱柱ABCD-A1B1C1D1的底面ABCD及四個側(cè)面都相切,對角線BD1與球面的兩個交點分別為M,N,M為線段BD的中點,MN=$\sqrt{6}$.則球O的體積為$\frac{9}{2}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,小凳的凳面為圓形,凳腳為三根細鋼管,考慮到鋼管的受力等因素,設(shè)計的小凳應(yīng)滿足:三根細鋼管相交處的節(jié)點P與凳面圓心O的連線垂直于凳面和地面,且P分細鋼管上下兩端的比值為0.618,三只凳腳與地面所成的角均為60°,若A、B、C是凳面圓角的三等分點,AB=18厘米,求凳面的高度h及三根細鋼管的總長度(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)y=2acos(2x-$\frac{π}{3}$)+b的定義域是[0,$\frac{π}{2}$],值域是[-5,1],求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某地區(qū)3月1日至30日的天氣情況及晚間空間溫度統(tǒng)計如表,比如,根據(jù)表中數(shù)據(jù)可知3月1日無雨,且當(dāng)日晚間空間相對溫度等級為C,若氣象工作者根據(jù)某天晚間的相對溫度等級預(yù)報第二天有雨的概率,則3月31日有雨的概率為$\frac{3}{5}$.
日期 1234 56789101112131415
 天氣    雨雨  雨    雨  雨  雨 
 溫度等級 CDCABCCADBBCACA
 日期161718192021222324252627282930
 天氣 雨    雨   雨 雨   雨   
 溫度等級 DCAADDDBBCDCDDB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知${({x+\frac{1}{ax}})^6}$展開式的常數(shù)項是540,則由曲線y=x2和y=xa圍成的封閉圖形的面積為$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項和Sn滿足6Sn=9an-1.
(I)求數(shù)列{an}的通項公式;
(Ⅱ)若函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的周期為π,且在x=$\frac{π}{6}$處取得最大值,最大值為a3,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=4sinxcosx(x∈R),將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個單位,再向上平移1個單位,得到函數(shù)y=g(x)的圖象,區(qū)間[a,b](a,b∈R且a<b)滿足:y=g(x)在[a,b]上至少有20個零點,在所有滿足上述條件的[a,b]中,b-a的最小值為(  )
A.10πB.$\frac{29π}{3}$C.$\frac{28π}{3}$D.$\frac{55π}{6}$

查看答案和解析>>

同步練習(xí)冊答案