分析 首先通過二項展開式求出a,然后利用定積分表示封閉圖形的面積.
解答 解:因為${({x+\frac{1}{ax}})^6}$展開式的常數(shù)項是540,所以${C}_{6}^{3}\frac{1}{{a}^{3}}$=540,解得a=$\frac{1}{3}$,
所以由曲線y=x2和y=xa圍成的封閉圖形的面積為S=${∫}_{0}^{1}({x}^{\frac{1}{3}}-{x}^{2})dx$=$(\frac{3}{4}{x}^{\frac{4}{3}}-\frac{1}{3}{x}^{3}){|}_{0}^{1}$=$\frac{5}{12}$;
故答案為:$\frac{5}{12}$.
點評 本題考查了二項式定理以及利用定積分求封閉圖形的面積;關鍵是正確求出a,利用定積分求表示面積.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 2 | C. | $\frac{{\sqrt{11}}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{12}{5}$ | B. | $\frac{24}{25}$ | C. | $\frac{8}{5}$ | D. | $\frac{2\sqrt{6}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com