6.設(shè)函數(shù)f(x)=x2-xlnx+2,若存在區(qū)間$[{a,b}]⊆[{\frac{1}{2},+∞})$,使f(x)在[a,b]上的值域為[k(a+2),k(b+2)],則k的取值范圍為(1,$\frac{9+2ln2}{10}$).

分析 判斷f(x)的單調(diào)性得出f(x)=k(x+2)在[$\frac{1}{2}$,+∞)上有兩解,作出函數(shù)圖象,利用導(dǎo)數(shù)的意義求出k的范圍.

解答 解:f′(x)=2x-lnx+1,f″(x)=2-$\frac{1}{x}$,
∴當(dāng)x≥$\frac{1}{2}$時,f″(x)≥0,
∴f′(x)在[$\frac{1}{2}$,+∞)上單調(diào)遞增,
∴f′(x)≥f′($\frac{1}{2}$)=2-ln$\frac{1}{2}$>0,
∴f(x)在[$\frac{1}{2}$,+∞)上單調(diào)遞增,
∵[a,b]⊆[$\frac{1}{2}$,+∞),
∴f(x)在[a,b]上單調(diào)遞增,
∵f(x)在[a,b]上的值域為[k(a+2),k(b+2)],
∴$\left\{\begin{array}{l}{f(a)=k(a+2)}\\{f(b)=k(b+2)}\end{array}\right.$,∴方程f(x)=k(x+2)在[$\frac{1}{2}$.+∞)上有兩解a,b.
作出y=f(x)與直線y=k(x+2)的函數(shù)圖象,則兩圖象有兩交點.

若直線y=k(x+2)過點($\frac{1}{2}$,$\frac{9}{4}+\frac{1}{2}ln2$),則k=$\frac{9+2ln2}{10}$,
若直線y=k(x+2)與y=f(x)的圖象相切,設(shè)切點為(x0,y0),
則$\left\{\begin{array}{l}{{y}_{0}=k({x}_{0}+2)}\\{{y}_{0}={{x}_{0}}^{2}-{x}_{0}ln{x}_{0}+2}\\{2{x}_{0}-ln{x}_{0}+1=k}\end{array}\right.$,解得k=1.
∴1<k<$\frac{9+2ln2}{10}$.
故答案為:(1,$\frac{9+2ln2}{10}$).

點評 本題考查了函數(shù)的單調(diào)性,導(dǎo)數(shù)的幾何意義,零點個數(shù)與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若不等式|8x+9|<7和不等式ax2+bx>2的解集相等,則實數(shù)a,b的值分別為( 。
A.a=-8,b=-10B.a=-4,b=-9C.a=-1,b=9D.a=-1,b=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1
(1)若$\overrightarrow{a}•\overrightarrow$=1,求$\overrightarrow{a}$與$\overrightarrow$的夾角.
(2)若$\overrightarrow{a}$與$\overrightarrow$的夾角θ為45°,求|$\overrightarrow{a}$-$\overrightarrow$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=xlnx,g(x)=-x2+ax-2
(Ⅰ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函數(shù)y=f(x)與y=g(x)的圖象恰有一個公共點,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某房屋開發(fā)公司根據(jù)市場調(diào)查,計劃在2017年開發(fā)的樓盤中設(shè)計“特大套”、“大套”、“經(jīng)濟適用房”三類商品房,每類房型中均有舒適和標(biāo)準(zhǔn)兩種型號.某年產(chǎn)量如表:
房型特大套大套經(jīng)濟適用房
舒適100150x
標(biāo)準(zhǔn)300y600
若按分層抽樣的方法在這一年生產(chǎn)的套房中抽取50套進行檢測,則必須抽取“特大套”套房10套,“大套”15套.
(1)求x,y的值;
(2)在年終促銷活動中,獎給了某優(yōu)秀銷售公司2套舒適型和3套標(biāo)準(zhǔn)型“經(jīng)濟適用型”套房,該銷售公司又從中隨機抽取了2套作為獎品回饋消費者.求至少有一套是舒適型套房的概率;
(3)今從“大套”類套房中抽取6套,進行各項指標(biāo)綜合評價,并打分如下:9.0    9.2    9.5    8.8    9.6    9.7
現(xiàn)從上面6個分值中隨機的一個一個地不放回抽取,規(guī)定抽到數(shù)9.6或9.7,抽取工作即停止.記在抽取到數(shù)9.6或9.7所進行抽取的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和為Sn,且a1+a5=17.
(1)若{an}還同時滿足:
①{an}為等比數(shù)列;②a2a4=16;③對任意的正整數(shù)n,a2n<a2n+2,試求數(shù)列{an}的通項公式.
(2)若{an}為等差數(shù)列,且S8=56.
①求該等差數(shù)列的公差d;②設(shè)數(shù)列{bn}滿足bn=3n•an,則當(dāng)n為何值時,bn最大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.運行如圖所示的程序框圖,若輸出的k的值為13,則判斷框中可以填( 。
A.m>7?B.m≥7?C.m>8?D.m>9?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知四棱錐P-ABCD底面ABCD是矩形,PA⊥平面ABCD,AD=4,AB=2,E,F(xiàn)分別是線段AB,BC的中點.
(1)證明:PF⊥FD;
(2)在PA上找一點G,使得EG∥平面PFD;
(3)若PB與平面ABCD所成的角為45°,
①理科做:求二面角P-DE-A的正切值;
②文科做:求點E到平面PFD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在等差數(shù)列{an}中,a2+a7=-23,a3+a8=-29
(1)求數(shù)列{an}的通項公式;
(2)設(shè)數(shù)列{an+bn}是首項為1,公比為2的等比數(shù)列,求{bn}的前n項和Sn

查看答案和解析>>

同步練習(xí)冊答案