【題目】如圖所示,在直三棱柱中, ,點分別是的中點.
(1)求證: ∥平面;
(2)若,求證: .
【答案】(1)見解析(2)見解析
【解析】試題分析:(1)先根據(jù)平面幾何知識證明四邊形是平行四邊形,得.再根據(jù)線面平行判定定理得結論(2)先根據(jù)直三棱柱性質(zhì)得,再根據(jù)等腰三角形性質(zhì)得,由線面垂直判定定理得側(cè)面.即得.再由已知,證得平面,即得結論
試題解析:證明:(1)因為是直三棱柱,所以,且,
又點分別是的中點,所以,且.
所以四邊形是平行四邊形,從而.
又平面, 平面,所以∥面.
(2)因為是直三棱柱,所以底面,而側(cè)面,
所以側(cè)面底面.
又,且是的中點,所以.
則由側(cè)面底面,側(cè)面底面,
,且底面,得側(cè)面.
又側(cè)面,所以.
又, 平面,且,
所以平面.
又平面,所以.
科目:高中數(shù)學 來源: 題型:
【題目】在拋物線y=x2與直線y=2圍成的封閉圖形內(nèi)任取一點A,O為坐標原點,則直線OA被該封閉圖形解得的線段長小于 的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直線l經(jīng)過兩直線l1:2x-y+4=0與l2:x-y+5=0的交點,且與直線x-2y-6=0垂直.
(1)求直線l的方程.
(2)若點P(a,1)到直線l的距離為,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線E:y2=4x,設A、B是拋物線E上分別位于x軸兩側(cè)的兩個動點,且 = (其中O為坐標原點)
(Ⅰ)求證:直線AB必過定點,并求出該定點Q的坐標;
(Ⅱ)過點Q作AB的垂線與拋物線交于G、D兩點,求四邊形AGBD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在底面是直角梯形的四棱錐S-ABCD中,面.
(1)求四棱錐S-ABCD的體積;
(2)求證:面
(3)求SC與底面ABCD所成角的正切值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知 cosB+ cosA= (I)求∠C的大。
(II)求sinB﹣ sinA的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四面體中, 平面, , ,
為的中點.
(Ⅰ)求證: ;
(Ⅱ)求二面角的余弦值.
(Ⅲ)求四面體的外接球的表面積.
(注:如果一個多面體的頂點都在球面上,那么常把該球稱為多面體的外接球. 球的表面積)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高中生調(diào)查了當?shù)啬承^(qū)的50戶居民由于臺風造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成三組,并作出如下頻率分布直方圖:
(1)在直方圖的經(jīng)濟損失分組中,以各組的區(qū)間中點值代表該組的各個值,并以經(jīng)濟損失落入該區(qū)間的頻率作為經(jīng)濟損失取該區(qū)間中點值的概率(例如:經(jīng)濟損失則取,且的概率等于經(jīng)濟損失落入的頻率),F(xiàn)從當?shù)氐木用裰须S機抽出2戶進行捐款援助,設抽出的2戶的經(jīng)濟損失的和為,求的分布列和數(shù)學期望.
(2)臺風后居委會號召小區(qū)居民為臺風重災區(qū)捐款,此高中生調(diào)查的50戶居民捐款情況如下表,在表格空白處填寫正確數(shù)字,并說明是否有95%以上的把握認為捐款數(shù)額多于或少于500元和自身經(jīng)濟損失是否到4000元有關?
經(jīng)濟損失不超過4000元 | 經(jīng)濟損失超過4000元 | 合計 | |
捐款超過500元 | 30 | ||
捐款不超過500元 | 6 | ||
合計 |
附:臨界值表參考公式: .
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com