【題目】直線l經(jīng)過兩直線l1:2x-y+4=0與l2:x-y+5=0的交點,且與直線x-2y-6=0垂直.

(1)求直線l的方程.

(2)若點P(a,1)到直線l的距離為,求實數(shù)a的值.

【答案】(1);(2)

【解析】試題分析:(1)解方程組可得直線的交點為(1,6),然后根據(jù)垂直可得直線l的斜率,由點斜式可得l的方程;(2有點到直線的距離公式可得,解得a=1或a=6,即為所求。

試題解析:

(1)由

所以直線l1l2的交點為(1,6),

又直線l垂直于直線x-2y-6=0,

所以直線l的斜率為k=-2,

故直線l的方程為y-6=-2(x-1),

即2x+y-8=0.

(2)因為點P(a,1)到直線l的距離等于,

所以=,

解得a=1或a=6.

所以實數(shù)a的值為1或6.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,嵩山上原有一條筆直的山路BC,現(xiàn)在又新架設(shè)了一條索道AC,小李在山腳B處看索道AC,發(fā)現(xiàn)張角∠ABC=120°;從B處攀登400米到達D處,回頭看索道AC,發(fā)現(xiàn)張角∠ADC=150°;從D處再攀登800米方到達C處,則索道AC的長為________米.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三點A(-1,1,2),B(1,2,-1),C(a,0,3),是否存在實數(shù)a,使AB、C共線?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍;

(2)若是函數(shù)的極值點,求函數(shù)上的最大值;

(3)在(2)的條件下,是否存在實數(shù),使得函數(shù)的圖象與函數(shù)的圖象恰有個交點?若存在,請求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求下列各式的值:

(1)2log32-log3+log38-5;

(2)[(1-log63)2+log62·log618]÷log64.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga(x+2)-1(a>0,且a≠1),g(x)=x-1.

(1)若函數(shù)yf(x)的圖象恒過定點A,求點A的坐標;

(2)若函數(shù)F(x)=f(x)-g(x)的圖象過點,試證明函數(shù)F(x)在x∈(1,2)上有唯一零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】經(jīng)市場調(diào)查某種商品在過去50天的銷量和價格均為銷售時間t(天)的函數(shù),且銷售量近似地滿足f(t)=-2t+200(1t50,tN),前30天價格為g(t)=t+30(1≤t≤30,tN),后20天價格為g(t)=45(31≤t≤50,tN).

(1)寫出該種商品的日銷售額S與時間t的函數(shù)關(guān)系式;

(2)求日銷售額S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一個同學家開了一個小賣部,他為了研究氣溫對熱飲銷售的影響,經(jīng)過統(tǒng)計,得到一個賣出的熱飲杯數(shù)與當天氣溫的對比表:

攝氏溫度/

-5

0

4

7

12

15

19

23

27

31

36

熱飲杯數(shù)

156

150

132

128

130

116

104

89

93

76

54

(1)畫出散點圖;

(2)從散點圖中發(fā)現(xiàn)氣溫與熱飲銷售杯數(shù)之間關(guān)系的一般規(guī)律;

(3)求回歸方程;

(4)如果某天的氣溫是,預測這天賣出的熱飲杯數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為定義在上的偶函數(shù),當時,有,且當時, ,給出下列命題:

的值為;②函數(shù)在定義域上為周期是2的周期函數(shù);

③直線與函數(shù)的圖像有1個交點;④函數(shù)的值域為.

其中正確的命題序號有__________ .

查看答案和解析>>

同步練習冊答案