定義在R上的偶函數(shù)f(x)滿(mǎn)足:對(duì)任意的x1,x2∈(-∞,0](x1≠x2),都有(x2-x1)•[f(x2)-f(x1)]>0,則( 。
A、f(-2)<f(1)<f(3)
B、f(1)<f(-2)<f(3)
C、f(3)<f(-2)<f(1)
D、f(3)<f(1)<f(-2)
考點(diǎn):函數(shù)單調(diào)性的性質(zhì),函數(shù)單調(diào)性的判斷與證明
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:先根據(jù)對(duì)任意的x1,x2∈(-∞,0](x1≠x2),都有(x2-x1)•[f(x2)-f(x1)]>0,可得函數(shù)f(x)在(-∞,0](x1≠x2)單調(diào)遞增.進(jìn)而可推斷f(x)在[0,+∞)上單調(diào)遞減,進(jìn)而可判斷出f(3),f(-2)和f(1)的大。
解答: 解:∵對(duì)任意的x1,x2∈(-∞,0](x1≠x2),都有(x2-x1)•[f(x2)-f(x1)]>0,
故f(x)在x1,x2∈(-∞,0](x1≠x2)單調(diào)遞增.
又∵f(x)是偶函數(shù),
∴f(x)在[0,+∞)上單調(diào)遞減,
且滿(mǎn)足n∈N*時(shí),f(-2)=f(2),
由3>2>1>0,
得f(3)<f(-2)<f(1),
故選:C.
點(diǎn)評(píng):本題主要考查了函數(shù)奇偶性的應(yīng)用和函數(shù)的單調(diào)性的應(yīng)用.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a,b,c滿(mǎn)足a2+b2=c2,c≠0,則
b
a-2c
的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A.∠B,∠C所對(duì)的三邊依次為a,b,c,若S△ABC=
3
4
(a2+c2-b2),則∠B=( 。
A、30°B、45°
C、60°D、135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有下列命題,其中正確的個(gè)數(shù)( 。
①終邊相同的角的三角函數(shù)值相同;
②同名三角函數(shù)值相同,角不一定相同;
③終邊不相同,它們的同名三角函數(shù)值一定不相同;
④不相等的角,同名三角函數(shù)也不相同.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)由數(shù)字0,1,2,3,4,5組成沒(méi)有重復(fù)數(shù)字的六位數(shù),其中個(gè)位數(shù)字小于十位數(shù)字的共有多少個(gè)?
(2)某高校從某系的10名優(yōu)秀畢業(yè)生中選4人分別到西部四城市參加中國(guó)西部經(jīng)濟(jì)開(kāi)發(fā)建設(shè),其中甲同學(xué)不到銀川,乙不到西寧,共有多少種不同派遣方案?
(3)將5個(gè)不同的小球放入3個(gè)不同的盒子中,要求每一個(gè)盒子至少有一個(gè)小球,共有多少種不同的放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定k∈N*,設(shè)函數(shù)f:N*→N*滿(mǎn)足:對(duì)于任意大于k的正整數(shù)n,f(n)=n-k.已知命題:k=3,當(dāng)n≤3且n∈N*時(shí),2≤f(n)≤3為真命題,則不同的函數(shù)f的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線(xiàn)C上任一點(diǎn)M與x軸的距離和它與點(diǎn)F(0,4)的距離相等,則曲線(xiàn)C( 。
A、關(guān)于x軸對(duì)稱(chēng)
B、關(guān)于y軸對(duì)稱(chēng)
C、在直線(xiàn)y=2的下方
D、關(guān)于原點(diǎn)中心對(duì)稱(chēng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“a<3”是“函數(shù)f(x)=x3-ax在[1,+∞)單調(diào)遞增”的(  )
A、充分而不必要條件
B、不要而不充分條件
C、既不充分也不必要條件
D、充要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=aln(
x2+1
+x)+bx3+2,且f(2)=5,則f(-2)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案