14.角α的終邊落在射線y=2x,(x≥0)上.則cosα的值為(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.-$\frac{\sqrt{5}}{5}$D.-$\frac{2\sqrt{5}}{5}$

分析 利用任意角三角函數(shù)的定義求解.

解答 解:∵角α的終邊落在射線y=2x,(x≥0)上,
∴x=1時,y=2,r=$\sqrt{5}$,
∴cosα=$\frac{x}{r}$=$\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$.
故選:A.

點評 本題考查余弦函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意任意角三角函數(shù)的定義的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點,過點F作雙曲線的一條漸近線的垂線,垂足為A,交另一條漸近線于點B.若3$\overrightarrow{FA}$=$\overrightarrow{FB}$,則此雙曲線的離心率為( 。
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知直線(2+λ)x-(1-2λ)y-(6+3λ)=0所經(jīng)過的定點F恰好是橢圓C的一個焦點,且橢圓C上點到點F的最小距離為2.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)已知圓O:x2+y2=1,直線l:mx+ny=1,試證明:當點P(m,n)在橢圓C上運動時,直線l與圓C恒相交,并求直線l被圓O所截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義[x]為不超過x的最大整數(shù),如[3.3]=3,[-1.8]=-2,設(shè)f(x)=x-[x],x∈R,要使得方程f(x)=ax恰有2015個實數(shù)解,則實數(shù)a的取值范圍是( 。
A.(-$\frac{1}{2014}$,-$\frac{1}{2015}$]∪[$\frac{1}{2015}$,$\frac{1}{2014}$)B.(-$\frac{1}{2014}$,-$\frac{1}{2015}$)∪($\frac{1}{2015}$,$\frac{1}{2014}$)
C.(-$\frac{1}{2013}$,-$\frac{1}{2014}$]∪[$\frac{1}{2016}$,$\frac{1}{2015}$)D.(-$\frac{1}{2014}$,-$\frac{1}{2015}$]∪[$\frac{1}{2016}$,$\frac{1}{2015}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.α=-1,則α的終邊所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.角α的終邊在第二、四象限的角平分線上,則角α的集合為{α|α=kπ+$\frac{3π}{4}$,k∈z }(用弧度制表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知f(x)=$\left\{\begin{array}{l}{x+k(1{-a}^{2}),x≥0}\\{{x}^{2}-4x{+(3-a)}^{2},x<0}\end{array}\right.$,a∈R,對任意非零實數(shù)x1,存在唯一的非零實數(shù)x2(x1≠x2),使得f(x1)=f(x2)成立,則實數(shù)k的取值范圍是(-∞,0]∪[8,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知直線l過(0,3),且與直線x+y+1=0垂直,則直線l的方程是( 。
A.x+y-2=0B.x-y+3=0C.x+y-3=0D.x-y+2=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.1+x1+x2+…+xn(x≠0)=$\left\{\begin{array}{l}{n+1,x=1}\\{\frac{1-{x}^{n+1}}{1-x},x≠0,1}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊答案