(本題滿分12分)等比數(shù)列中,.
(1)求數(shù)列的通項公式;
(2)若分別為等差數(shù)列的第4項和第16項,求數(shù)列的前項和.
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列{}是等差數(shù)列,且滿足:a1+a2+a3=6,a5=5;
數(shù)列{}滿足:-=(n≥2,n∈N﹡),b1=1.
(Ⅰ)求和;
(Ⅱ)記數(shù)列=(n∈N﹡),若{}的前n項和為,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分18分,第1小題4分,第2小題6分,第3小題8分)
已知數(shù)列{an}滿足,(其中λ≠0且λ≠–1,n∈N*),為數(shù)列{an}的前項和.
(1) 若,求的值;
(2) 求數(shù)列{an}的通項公式;
(3) 當時,數(shù)列{an}中是否存在三項構成等差數(shù)列,若存在,請求出此三項;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
設數(shù)列對任意正整數(shù)n都成立,m為大于—1的非零常數(shù)。
(1)求證是等比數(shù)列;
(2設數(shù)列
求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分16分)
已知數(shù)列滿足,
(1)求證:數(shù)列為等比數(shù)列 (2)求數(shù)列的通項公式
(3)試問:數(shù)列中是否存在不同的三項恰好成等差數(shù)列?若存在,求出這三項;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是公比大于1的等比數(shù)列,是函數(shù)的兩個零點。
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,且,求的最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com