設(shè)函數(shù)f(x)=-
13
x3+x2+(m2-1)x(x∈R),其中m>0.
(1)當(dāng)m=1時,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.
分析:(1)由已知中函數(shù)f(x)=-
1
3
x3+x2+(m2-1)x,根據(jù)m=1,我們易求出f(1)及f′(1)的值,代入點(diǎn)斜式方程即可得到答案.
(2)由已知我們易求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)函數(shù)值為0,我們則求出導(dǎo)函數(shù)的零點(diǎn),根據(jù)m>0,我們可將函數(shù)的定義域分成若干個區(qū)間,分別在每個區(qū)間上討論導(dǎo)函數(shù)的符號,即可得到函數(shù)的單調(diào)區(qū)間.
解答:解:(1)當(dāng)m=1時,f(x)=-
1
3
x3+x2,f′(x)=-x2+2x,故f′(1)=1.
所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率為1.
(2)f′(x)=-x2+2x+m2-1.
令f′(x)=0,解得x=1-m,或x=1+m.
因?yàn)閙>0,所以1+m>1-m.
當(dāng)x變化時,f′(x),f(x)的變化情況如下表:
x (-∞,1-m) 1-m (1-m,1+m) 1+m (1+m,+∞)
f′(x) - 0 + 0 -
f(x) 遞增 極小值 遞增 極大值 遞減
所以f(x)在(-∞,1-m),(1+m,+∞)內(nèi)是減函數(shù),在(1-m,1+m)內(nèi)是增函數(shù).
點(diǎn)評:本題考查的知識點(diǎn)是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,其中根據(jù)已知函數(shù)的解析式求出導(dǎo)函數(shù)的解析式是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|1-
1x
|(x>0),證明:當(dāng)0<a<b,且f(a)=f(b)時,ab>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1-
1-x
x
(x<0)
a+x2(x≥0)
,要使f(x)在(-∞,+∞)內(nèi)連續(xù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1             (x≤
3
)
4-x2
(
3
<x<2)
0              (x≥2)
,則
2010
-1
f(x)dx的值為
π
3
+
2+
3
2
π
3
+
2+
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1-|x-1|,x<2
1
2
f(x-2),x≥2
,則函數(shù)F(x)=xf(x)-1的零點(diǎn)的個數(shù)為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1,x>0
0,x=0
-1,x<0
,g(x)=x2f(x-1),則函數(shù)g(x)的遞減區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊答案