設(shè)函數(shù)f(x)=
x2+x,x<0
-x2,x≥0
,則f(f(-2))=
 
考點:函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由分段函數(shù)的性質(zhì)得f(-2)=(-2)2-2=2,從而f(f(-2))=f(2)=-22=-4.
解答: 解:∵f(x)=
x2+x,x<0
-x2,x≥0
,
∴f(-2)=(-2)2-2=2,
f(f(-2))=f(2)=-22=-4.
故答案為:-4.
點評:本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)在要建造一個長方體游泳池,其容積為200m3,深為2m.如果池底每平方米的造價為200元,池壁每平方米的造價為150元,問:怎樣設(shè)計水池能使總造價最低?最低總造價是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等差數(shù)列,a5=10,a1+a2+a3=3,則a1與d分別為(  )
A、a1=-2,d=3
B、a1=2,d=-3
C、a1=-3,d=2
D、a1=3,d=-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等比數(shù)列{an}滿足a1+a3=5,且公比q=2,則a3+a5=(  )
A、10B、13C、20D、25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項等比數(shù)列{an}滿足a3•a2n-3=4n(n>1),則log2a1+log2a3+log2a5+…+log2a2n-1=(  )
A、n2
B、(n+1)2
C、n(2n-1)
D、(n-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知i為虛數(shù)單位,復(fù)數(shù)z=
1+2i
1-i
,則復(fù)數(shù)
.
z
在復(fù)平面上的對應(yīng)點位于第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-1≤x≤3},集合B={x|
1
x
<0},則A∪B=( 。
A、{x|-1<x<0}
B、{x|-1≤x<0}
C、{x|x<0}
D、{x|x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=x2-3×2n-1x+2×4n-1(n∈N*)的圖象在x軸上截得的拋物線長為dn,記數(shù)列{dn}的前n項和為Sn,若存在正整數(shù)n,使得log2(Sn+1) m-n2≥18成立,則實數(shù)m的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知常數(shù)b>0,函數(shù)f(x)=
ax
x+a
圖象過(2,1)點,函數(shù)g(x)=ln(1+bx)設(shè)h(x)=g(x)-f(x)
(Ⅰ)討論h(x)在區(qū)間(0,+∞)上的單調(diào)性.
(Ⅱ)若h(x)存在兩個極值點x1,x2,求b的取值范圍,使h(x1)+h(x2)>0.

查看答案和解析>>

同步練習(xí)冊答案