【題目】已知函數(shù)的圖象是自原點(diǎn)出發(fā)的一條折線,當(dāng))時(shí),該圖象是斜率為的線段,其中常數(shù),數(shù)列)定義.

1)若,求,;

2)求的表達(dá)式及的解析式(不必求的定義域);

3)當(dāng)時(shí),求的定義域,并證明的圖象與的圖象沒(méi)有橫坐標(biāo)大于1的公共點(diǎn).

【答案】1,; 2;時(shí),,(); 3的定義域?yàn)?/span>,證明見(jiàn)解析.

【解析】

(1)由題意知,,當(dāng)時(shí),圖像是斜率為的線段,所以,即可求出,同理求出;(2) 當(dāng)時(shí),,得,利用累加法可求得,當(dāng)時(shí),即時(shí),化簡(jiǎn)即可求得的解析式;(3) 當(dāng)時(shí),,的定義域?yàn)?/span>,證明,時(shí),恒有成立,運(yùn)用的解析式結(jié)合不等式的性質(zhì)即可得到結(jié)論.

1)由,,當(dāng)時(shí),圖像是斜率為的線段,

,

,又,

,

.

2)由(1)知,,;

因?yàn)楫?dāng)時(shí),,,

所以

而此式對(duì)也成立,所以

又當(dāng)時(shí),,∴

時(shí),,();

3)當(dāng)時(shí),,的定義域?yàn)?/span>

下面證明時(shí),恒有成立

事實(shí)上,對(duì)任總存在,使得,于是由可有,進(jìn)而

當(dāng)時(shí),,

,∴,

綜上所述,的圖象與的圖象沒(méi)有橫坐標(biāo)大于1的公共點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】李克強(qiáng)總理在很多重大場(chǎng)合都提出大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新.某創(chuàng)客,白手起家,2015年一月初向銀行貸款十萬(wàn)元做創(chuàng)業(yè)資金,每月獲得的利潤(rùn)是該月初投入資金的.每月月底需要交納房租和所得稅共為該月全部金額(包括本金和利潤(rùn))的,每月的生活費(fèi)等開(kāi)支為3000元,余款全部投入創(chuàng)業(yè)再經(jīng)營(yíng).如此每月循環(huán)繼續(xù).

1)問(wèn)到2015年年底(按照12個(gè)月計(jì)算),該創(chuàng)客有余款多少元?(結(jié)果保留至整數(shù)元)

2)如果銀行貸款的年利率為,問(wèn)該創(chuàng)客一年(12個(gè)月)能否還清銀行貸款?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=sinxcosxcos2x+1

1)求fx)的最小正周期和最大值,并寫(xiě)出取得最大值時(shí)x的集合;

2)將fx)的函數(shù)圖象向左平移φφ0)個(gè)單位后得到的函數(shù)gx)是偶函數(shù),求φ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)對(duì)某市工薪階層關(guān)于樓市限購(gòu)令的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50,他們?cè)率杖氲念l數(shù)分布及對(duì)樓市限購(gòu)令贊成人數(shù)如表:

月收入(單位百元)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

8

12

5

2

1

()由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表并問(wèn)是否有99%的把握認(rèn)為月收入以5500為分界點(diǎn)對(duì)樓市限購(gòu)令的態(tài)度有差異;

月收入低于55百元的人數(shù)

月收入不低于55百元的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

()若采用分層抽樣在月收入在[15,25),[25,35)的被調(diào)查人中共隨機(jī)抽取6人進(jìn)行追蹤調(diào)查,并給予其中3紅包獎(jiǎng)勵(lì),求收到紅包獎(jiǎng)勵(lì)的3人中至少有1人收入在[15,25)的概率.

參考公式:K2,其中n=a+b+c+d.

參考數(shù)據(jù):

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線過(guò)點(diǎn)且與橢圓相交于兩點(diǎn).過(guò)點(diǎn)作直線的垂線,垂足為.證明直線過(guò)軸上的定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn).若曲線上存在兩點(diǎn),使為正三角形,則稱型曲線.給定下列三條曲線:

;

其中型曲線的個(gè)數(shù)是

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若曲線處的切線的斜率為2,求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)在區(qū)間上有零點(diǎn),求實(shí)數(shù)的取值范圍.是自然對(duì)數(shù)的底數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,都是正三角形, , E、F分別是AC、BC的中點(diǎn),且PDABD.

(Ⅰ)證明:直線⊥平面;

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)三角形數(shù)表按如下方式構(gòu)成(如圖:其中項(xiàng)數(shù)):第一行是以4為首項(xiàng),4為公差的等差數(shù)列,從第二行起,每一個(gè)數(shù)是其肩上兩個(gè)數(shù)的和,例如:;為數(shù)表中第行的第個(gè)數(shù).

……

(1)求第2行和第3行的通項(xiàng)公式

(2)證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求關(guān)于的表達(dá)式;

(3)若,試求一個(gè)等比數(shù)列,使得,且對(duì)于任意的,均存在實(shí)數(shù),當(dāng)時(shí),都有.

查看答案和解析>>

同步練習(xí)冊(cè)答案