已知某幾何體的三視圖如圖所示,則該幾何體的體積為         

試題分析:由幾何體的三視圖知,該幾何體是底面是邊長為4的正方形,高為2的四棱錐,由此能求出該幾何體的體積.解:由幾何體的三視圖知,該幾何體是如圖所示的四棱錐,

其中底面是邊長為4的正方形ABCD, PD⊥面ABCD,PD=2,∴該幾何體的體積 
點評:題考點是由三視圖求幾何體的面積、體積,考查對三視圖的理解與應(yīng)用,主要考查三視圖與實物圖之間的關(guān)系,用三視圖中的數(shù)據(jù)還原出實物圖的數(shù)據(jù),再根據(jù)相關(guān)的公式求表面積與體積,本題求的是三棱錐的體積.三視圖的投影規(guī)則是:“主視、俯視 長對正;主視、左視高平齊,左視、俯視 寬相等”.三視圖是高考的新增考點,不時出現(xiàn)在高考試題中,應(yīng)予以重視.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知三棱錐的頂點都在球的球面上,平面,則三棱錐的體積等于____  

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

用鐵皮制作一個無蓋的圓錐形容器,已知該圓錐的母線與底面所在的平面所成角為,容器的高為,制作該容器需要______的鐵皮.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

半徑為r的圓的面積, 周長,若將r看作 (0,+∞)上的變量,則有①: ,①式可以用語言敘述為:圓的面積函數(shù)的導數(shù)等于圓的周長函數(shù)。對于半徑為R的球,若將看作(0,+∞)上的變量,請你寫出類似于①的式子:         (已知球的體積公式為:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知三棱錐兩兩垂直,且長度均為6,長為2的線段的一個端點在棱上運動,另一端點內(nèi)運動(含邊界),則的中點的軌跡與三棱錐所圍成的幾何體的體積為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某三棱錐P-ABC的正視圖為如圖所示邊長為2的正三角形,俯視圖為等腰直角三角 形,則三棱錐的表面積是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

半徑為1的球面上有三點,其中點兩點間的球面距離均為,兩點間的球面距離為,則球心到平面的距離為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

幾何體的三視圖如圖,則幾何體的體積為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若一個棱錐的三視圖如圖所示,則它的體積為(  )
A.B.C.1D.

查看答案和解析>>

同步練習冊答案