【題目】已知函數(shù),把函數(shù)的圖象向右平移個(gè)單位,再把圖象上各點(diǎn)的橫坐標(biāo)縮小到原來(lái)的一半,縱坐標(biāo)不變,得到函數(shù)的圖象,當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)根,則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
【答案】B
【解析】
利用輔助角公式,化簡(jiǎn)得到函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象變換,得到函數(shù)的解析式,再把方程恰好有兩個(gè)不同的實(shí)數(shù)解,轉(zhuǎn)化為與有兩個(gè)不同的交點(diǎn),結(jié)合三角函數(shù)的性質(zhì),即可求解.
由題意,根據(jù)輔助角公式,可得函數(shù),
把函數(shù)的圖象向右平移個(gè)單位,得到,
再把函數(shù)圖象上各點(diǎn)的橫坐標(biāo)縮小到原來(lái)的一半,得到函數(shù),
因?yàn)?/span>,則,
令,解得,即函數(shù)在上單調(diào)遞增,
令,解得,即函數(shù)在上單調(diào)遞減,
且,
要使得方程恰好有兩個(gè)不同的實(shí)數(shù)解,即與有兩個(gè)不同的交點(diǎn),
結(jié)合圖象,可得實(shí)數(shù)的取值范圍是,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)圓錐的體積為,當(dāng)這個(gè)圓錐的側(cè)面積最小時(shí),其母線(xiàn)與底面所成角的正切值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語(yǔ)文、數(shù)學(xué)和英語(yǔ)是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目.若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱(chēng)該學(xué)生的選考方案確定;否則,稱(chēng)該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有6人 | 6 | 6 | 3 | 1 | 2 | 0 |
選考方案待確定的有8人 | 5 | 4 | 0 | 1 | 2 | 1 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 0 | 0 | 1 | 1 |
(Ⅰ)試估計(jì)該學(xué)校高一年級(jí)確定選考生物的學(xué)生有多少人?
(Ⅱ)寫(xiě)出選考方案確定的男生中選擇“物理、化學(xué)和地理”的人數(shù).(直接寫(xiě)出結(jié)果)
(Ⅲ)從選考方案確定的男生中任選2名,試求出這2名學(xué)生選考科目完全相同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體中,平面,.,.M是的中點(diǎn),P是的中點(diǎn),點(diǎn)Q在線(xiàn)段上,且.
(1)證明:;
(2)若二面角的大小為60°,求的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓:的左,右焦應(yīng)分別是,,離心率為,過(guò)且垂直于軸的直線(xiàn)被橢圓截得的線(xiàn)段長(zhǎng)為1.
(1)求橢圓的方程;
(2)已知直線(xiàn):與橢圓切于點(diǎn),直線(xiàn)平行于,與橢圓交于不同的兩點(diǎn)、,且與直線(xiàn)交于點(diǎn).證明:存在常數(shù),使得,并求的值;
(3)點(diǎn)是橢圓上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),連接,,設(shè)后的角平分線(xiàn)交的長(zhǎng)軸于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)為拋物線(xiàn)的焦點(diǎn),過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于、兩點(diǎn),點(diǎn)在拋物線(xiàn)上,使得的重心在軸上,直線(xiàn)交軸于點(diǎn),且在點(diǎn)的右側(cè).記、的面積分別、.
(1)求的值及拋物線(xiàn)的方程;
(2)求的最小值及此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若曲線(xiàn)與在點(diǎn)處有相同的切線(xiàn),求函數(shù)的極值;
(2)若,討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]
在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求曲線(xiàn)的極坐標(biāo)方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)若射線(xiàn) 與曲線(xiàn)交于,兩點(diǎn),與曲線(xiàn)交于,兩點(diǎn),求取最大值時(shí)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為推進(jìn)農(nóng)村經(jīng)濟(jì)結(jié)構(gòu)調(diào)整,某鄉(xiāng)村舉辦水果觀光采摘節(jié),并推出配套鄉(xiāng)村游項(xiàng)目.現(xiàn)統(tǒng)計(jì)了4月份100名游客購(gòu)買(mǎi)水果的情況,得到如圖所示的頻率分布直方圖.
(1)若將購(gòu)買(mǎi)金額不低于80元的游客稱(chēng)為“優(yōu)質(zhì)客戶(hù)”,現(xiàn)用分層抽樣的方法從樣本的“優(yōu)質(zhì)客戶(hù)”中抽取5人,求這5人中購(gòu)買(mǎi)金額不低于100元的人數(shù);
(2)從(1)中的5人中隨機(jī)抽取2人作為幸運(yùn)客戶(hù)免費(fèi)參加鄉(xiāng)村游項(xiàng)目,請(qǐng)列出所有的基本事件,并求2人中至少有1人購(gòu)買(mǎi)金額不低于100元的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com