已知函數(shù)數(shù)學(xué)公式,
(Ⅰ)若p=2,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)p的取值范圍;
(Ⅲ)若p2-p≥0,且至少存在一點(diǎn)x0∈[1,e],使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍.

解:(Ⅰ)當(dāng)p=2時(shí),函數(shù),…(2分)
曲線f(x)在點(diǎn)(1,f(1))處的切線的斜率為f'(1)=2+2-2=2.
從而曲線f(x)在點(diǎn)(1,f(1))處的切線方程為y-0=2(x-1),即y=2x-2.…(4分)
(Ⅱ).令h(x)=px2-2x+p,
要使f(x)在定義域(0,+∞)內(nèi)是增函數(shù),只需h(x)≥0…(6分)
,故正實(shí)數(shù)p的取值范圍是[1,+∞).…(8分)
(Ⅲ)∵在[1,e]上是減函數(shù),
∴x=e時(shí),g(x)min=2;x=1時(shí),g(x)max=2e,即g(x)∈[2,2e],…(10分)
①當(dāng)p<0時(shí),h(x)=px2-2x+p,其圖象為開口向下的拋物線,對(duì)稱軸在y軸的左側(cè),且h(0)<0,所以f(x)在x∈[1,e]內(nèi)是減函數(shù).
當(dāng)p=0時(shí),h(x)=-2x,因?yàn)閤∈[1,e],所以,此時(shí),f(x)在x∈[1,e]內(nèi)是減函數(shù).
故當(dāng)p≤0時(shí),f(x)在[1,e]上單調(diào)遞減?f(x)max=f(1)=0<2,不合題意;…(12分)
②當(dāng)p≥1時(shí),由(2)知f(x)在[1,e]上是增函數(shù),
f(1)=0<2,又g(x)在[1,e]上是減函數(shù),故只需f(x)max>g(x)min,x∈[1,e],而,即,解得
所以實(shí)數(shù)p的取值范圍是.…(14分)
分析:(Ⅰ)先函數(shù)的導(dǎo)函數(shù),然后求出f'(1)的值即為切線的斜率,然后利用點(diǎn)斜式可求出切線方程;
(Ⅱ)先求導(dǎo)函數(shù),令h(x)=px2-2x+p,要使f(x)在定義域(0,+∞)內(nèi)是增函數(shù),只需h(x)≥0,然后利用參數(shù)分離法求解恒成立問題即可;
(Ⅲ)利用導(dǎo)數(shù)研究函數(shù)f(x)與g(x)在[1,e]上的單調(diào)性,求出最值,只需f(x)max>g(x)min,x∈[1,e]成立,求出p的取值范圍即可.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及利用導(dǎo)數(shù)研究函數(shù)在閉區(qū)間上的最值,同時(shí)考查了轉(zhuǎn)化的思想和運(yùn)算求解的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)若p=2.求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)p的取值范圍;
(3)若?x0∈[1,e],使得f(x0)>2成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式
(1)若p=2,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省合肥168中、屯溪一中高三(上)12月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(I)若p=2,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)p的取值范圍;
(Ⅲ)設(shè)函數(shù),若在[1,e]上至少存在一點(diǎn)x,使得f(x)>g(x)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年黑龍江省雙鴨山一中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)若p=2,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年遼寧省遼南協(xié)作體高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)
(I)若p=2,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)p的取值范圍;
(Ⅲ)設(shè)函數(shù),若在[1,e]上至少存在一點(diǎn)x,使得f(x)>g(x)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案