18.二項(xiàng)式(x+y+2)5的展開式中,含x2y2的項(xiàng)的系數(shù)是60(用數(shù)字作答)

分析 先求得二項(xiàng)式展開式的通項(xiàng)公式,求得r、r′的值,即可求得含x2y2的項(xiàng)的系數(shù).

解答 解:二項(xiàng)式(x+y+2)5的展開式的通項(xiàng)公式為Tr+1=${C}_{5}^{r}•(x+y)^{5-r}$•2r
對(duì)于(x+y)5-r,它的通項(xiàng)公式為Tr′+1=${C}_{5-r}^{r′}•{x}^{5-r-r′}•{y}^{r′}$,
其中,r′≤5-r,0≤r≤5,r、r′都是自然數(shù).
令r=1,r′=2,含x2y2的項(xiàng)的系數(shù)是${C}_{5}^{1}$•21•${C}_{4}^{2}$=60,
故答案為:60.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求值:(1)log2cos$\frac{π}{9}$+log2cos$\frac{2π}{9}$+log2cos$\frac{4π}{9}$;
(2)$\frac{1+cos20°}{sin20°}$-sin10°($\frac{1}{tan5°}$-tan5°)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知sinα=$\frac{\sqrt{5}}{5}$,且0<α<$\frac{π}{2}$,tanβ=-3,且$\frac{π}{2}$<β<π,則α+β的值為( 。
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=|x-1|+a,a∈R,g(x)=|2x-1|.
(1)當(dāng)a=2時(shí),解關(guān)于x的不等式f(x)+g(x)≤5;
(2)當(dāng)g(x)≤5時(shí),關(guān)于x的不等式x•[f(x)-a]≤a2-a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.定義在R上的函數(shù)f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,已知an=f($\frac{1}{n}$)+f($\frac{2}{n}$)+…f($\frac{n-1}{n}$)(n≥2),an=$\frac{n-1}{2}$(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)y=$\root{4}{15-2x-{x}^{2}}$
(1)求函數(shù)的定義域、值域;
(2)判斷函數(shù)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知a>0,若函數(shù)f(x)=sinx•lg(x+$\sqrt{a+{x}^{2}}$)為偶函數(shù),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}
(1)求A∪B,(∁RA)∩B
(2)若A∩C=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=log4(ax2+2x+3),若f(1)=1,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案