【題目】已知拋物線的方程為,其焦點(diǎn)為,為過焦點(diǎn)的拋物線的弦,過分別作拋物線的切線,設(shè)相交于點(diǎn).

(1)求的值;

(2)如果圓的方程為且點(diǎn)在圓內(nèi)部,設(shè)直線相交于兩點(diǎn),求的最小值.

【答案】(1)見解析;(2)

【解析】

設(shè),聯(lián)立直線方程與拋物線方程求得,求導(dǎo)算出斜率得,即,所以

結(jié)合,聯(lián)立在點(diǎn)、處的切線方程得交點(diǎn),點(diǎn)在圓內(nèi),表示出,列出的表達(dá)式,然后求解結(jié)果

(1)設(shè),因?yàn)?/span>,所以設(shè)AB的方程為,代入拋物線方程得,所以為方程的解,從而,

又因?yàn)?/span>,因此,即,所以

(2)由(1)知,聯(lián)立C1在點(diǎn)A,B處的切線方程分別為,,得到交點(diǎn)由點(diǎn)P在圓內(nèi)得,又因?yàn)?/span>,,其中dO到直線AB的距離.

所以. 的方程為,所以,令,由.又由,所以,從而

所以,當(dāng)m=2時(shí),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知變量之間的線性回歸方程為,且變量之間的一-組相關(guān)數(shù)據(jù)如下表所示,則下列說法錯(cuò)誤的是( )

A.可以預(yù)測,當(dāng)時(shí),B.

C.變量、之間呈負(fù)相關(guān)關(guān)系D.該回歸直線必過點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知梯形如圖(1)所示,其中, ,四邊形是邊長為的正方形,現(xiàn)沿進(jìn)行折疊,使得平面平面,得到如圖(2)所示的幾何體.

(Ⅰ)求證:平面平面

(Ⅱ)已知點(diǎn)在線段上,且平面,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)gx)=ax2+ca,cR),g1)=1且不等式gxx2x+1對一切實(shí)數(shù)x恒成立.

)求函數(shù)gx)的解析式;

)在()的條件下,設(shè)函數(shù)hx)=2gx)﹣2,關(guān)于x的不等式hx1+4hmh)﹣4m2hx),在x[,+∞)有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市從2014年甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機(jī)抽取100個(gè),整理得到數(shù)據(jù)分組及頻率分布表和頻率分布直方圖:

(1)寫出頻率分布直方圖中的值,并做出甲種酸奶日銷售量的頻率分布直方圖;

(2)記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為。試比較的大小

(3)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中間值代替,試估計(jì)乙種酸奶在未來一個(gè)月(按30天計(jì)算)的銷售總量

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)fx=2x2-5x-6有兩個(gè)零點(diǎn)x1x2x1x2),則( .

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的不等式ax2-2a+1x+20,其中aR

1)當(dāng)a=1時(shí),求原不等式的解集;

2)當(dāng)a≥0時(shí),求原不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險(xiǎn)公司對一個(gè)擁有20000人的企業(yè)推出一款意外險(xiǎn)產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金,保險(xiǎn)公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付概率):

已知三類工種職工每人每年保費(fèi)分別為25元、25元、40元,出險(xiǎn)后的賠償金額分別為100萬元、100萬元、50萬元,保險(xiǎn)公司在開展此項(xiàng)業(yè)務(wù)過程中的固定支出為每年10萬元.

(1)求保險(xiǎn)公司在該業(yè)務(wù)所或利潤的期望值;

(2)現(xiàn)有如下兩個(gè)方案供企業(yè)選擇:

方案1:企業(yè)不與保險(xiǎn)公司合作,職工不交保險(xiǎn),出意外企業(yè)自行拿出與保險(xiǎn)公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項(xiàng)工作的固定支出為每年12萬元;

方案2:企業(yè)與保險(xiǎn)公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的70%,職工個(gè)人負(fù)責(zé)保費(fèi)的30%,出險(xiǎn)后賠償金由保險(xiǎn)公司賠付,企業(yè)無額外專項(xiàng)開支.

請根據(jù)企業(yè)成本差異給出選擇合適方案的建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知對任意的實(shí)數(shù)都有:,且當(dāng)時(shí),有

1)求;

2)求證:上為增函數(shù);

3)若,且關(guān)于的不等式對任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案