【題目】高二年級有500名學生,為了了解數(shù)學學科的學習情況,現(xiàn)從中隨機抽出若干名學生在一次測試中的數(shù)學成績,制成如下頻率分布表:

分組

頻數(shù)

頻率

[85,95)

0.025

[95,105)

0.050

[105,115)

0.200

[115,125)

12

0.300

[125,135)

0.275

[135,145)

4

[145,155]

0.050

合計


(1)根據(jù)圖表,①②③處的數(shù)值分別為、;
(2)在所給的坐標系中畫出[85,155]的頻率分布直方圖;

(3)根據(jù)題中信息估計總體落在[125,155]中的概率.

【答案】
(1)1;0.1;1
(2)
(3)解:根據(jù)題中信息估計總體落在[125,155]中的概率為:

0.275+0.100+0.050=0.425.


【解析】解:(1)∵數(shù)學成績落在區(qū)間[115,125)的頻數(shù)為12,頻率為0.300,∴參與抽查的樣本容量為 =40,由于合計的頻率和一定為1,故③應填1;由數(shù)學成績落在區(qū)間[135,145)的頻數(shù)為4,可得其頻率為 =0.100,故②應填0.1;由于[85,95)的頻率為0.025,∴ ,解得①處應填1.所以答案是:1,0.1,1.
【考點精析】解答此題的關鍵在于理解頻率分布直方圖的相關知識,掌握頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù))的一個極值為

(1)求實數(shù)的值;

(2)若函數(shù)在區(qū)間上的最大值為18,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且cosAcosC﹣cos(A+C)=sin2B. (Ⅰ)證明:a,b,c成等比數(shù)列;
(Ⅱ)若角B的平分線BD交AC于點D,且b=6,SBAD=2SBCD , 求BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l:(k﹣1)x﹣2y+5﹣3k=0(k∈R)恒過定點P,圓C經(jīng)過點A(4,0)和點P,且圓心在直線x﹣2y+1=0上.
(1)求定點P的坐標;
(2)求圓C的方程;
(3)已知點P為圓C直徑的一個端點,若另一個端點為點Q,問:在y軸上是否存在一點M(0,m),使得△PMQ為直角三角形,若存在,求出m的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是梯形,四邊形是矩形,且平面平面, , , , 是線段上的動點.

1試確定點的位置,使平面,并說明理由;

21的條件下,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求的單調(diào)區(qū)間;

(2)當時,若存在使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若cosA= ,c=3b,且△ABC面積SABC=
(1)求邊b.c;
(2)求邊a并判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M:x2+(y﹣4)2=4,點P是直線l:x﹣2y=0上的一動點,過點P作圓M的切線PA,PB,切點為A,B.
(1)當切線PA的長度為 時,求點P的坐標;
(2)若△PAM的外接圓為圓N,試問:當P在直線l上運動時,圓N是否過定點?若存在,求出所有的定點的坐標;若不存在,說明理由.
(3)求線段AB長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有8名奧運會志愿者,其中志愿者A1 , A2 , A3通曉日語,B1 , B2 , B3通曉俄語,C1 , C2通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(1)求A1被選中的概率;
(2)求B1和C1不全被選中的概率.

查看答案和解析>>

同步練習冊答案