【題目】已知直線l:(k﹣1)x﹣2y+5﹣3k=0(k∈R)恒過定點P,圓C經(jīng)過點A(4,0)和點P,且圓心在直線x﹣2y+1=0上.
(1)求定點P的坐標;
(2)求圓C的方程;
(3)已知點P為圓C直徑的一個端點,若另一個端點為點Q,問:在y軸上是否存在一點M(0,m),使得△PMQ為直角三角形,若存在,求出m的值,若不存在,請說明理由.

【答案】
(1)解:由(k﹣1)x﹣2y+5﹣3k=0得,k(x﹣3)﹣(x+2y﹣5)=0,

,得 ,即定點P的坐標為(3,1).


(2)解:設(shè)圓C的方程為x2+y2+Dx+Ey+F=0,

由條件得 ,解得

所以圓C的方程為x2+y2﹣14x﹣8y+40=0,

圓C的標準方程(x﹣7)2+(y﹣4)2=25.


(3)解:圓C的標準方程為(x﹣7)2+(y﹣4)2=25,則 ,

設(shè)點P(3,1)關(guān)于圓心(7,4)的對稱點為(x0,y0),則有 ,

解得x0=11,y0=7,故點Q的坐標為(11,7).

因為M在圓外,所以點M不能作為直角三角形的頂點,

若點P為直角三角形的頂點,則有 ,m=5,

若點Q是直角三角形的頂點,則有 , ,

綜上,m=5或


【解析】(1)左右直線l的方程:k(x﹣3)﹣(x+2y﹣5)=0,令 ,即可求得定點P的坐標;(2)設(shè)圓的方程,由題意列方程組,即可求圓的標準方程;(3)由(2)可知:求得直線CP的斜率,根據(jù)對稱性求得Q點坐標,由M在圓外,所以點M不能作為直角三角形的頂點,分類討論,即可求得m的值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C經(jīng)過A(3,2)、B(1,6),且圓心在直線y=2x上. (Ⅰ)求圓C的方程.
(Ⅱ)若直線l經(jīng)過點P(﹣1,3)與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù))

(1)若,當時,試比較2的大小;

(2)若函數(shù)有兩個極值點,求的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出以下四個問題:①x,輸出它的絕對值.②求面積為6的正方形的周長.③求三個數(shù)a,b,c中最大數(shù).④求函數(shù)的函數(shù)值.其中不需要用條件語句來描述其算法的有 個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,討論的單調(diào)性;

(2)當時,若方程有兩個相異實根,且,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M:x2+(y﹣2)2=r2(r>0)與曲線C:(y﹣2)(3x﹣4y+3)=0有三個不同的交點.
(1)求圓M的方程;
(2)已知點Q是x軸上的動點,QA,QB分別切圓M于A,B兩點. ①若 ,求|MQ|及直線MQ的方程;
②求證:直線AB恒過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高二年級有500名學生,為了了解數(shù)學學科的學習情況,現(xiàn)從中隨機抽出若干名學生在一次測試中的數(shù)學成績,制成如下頻率分布表:

分組

頻數(shù)

頻率

[85,95)

0.025

[95,105)

0.050

[105,115)

0.200

[115,125)

12

0.300

[125,135)

0.275

[135,145)

4

[145,155]

0.050

合計


(1)根據(jù)圖表,①②③處的數(shù)值分別為、、;
(2)在所給的坐標系中畫出[85,155]的頻率分布直方圖;

(3)根據(jù)題中信息估計總體落在[125,155]中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)等比數(shù)列{an}的各項均為正數(shù),其前n項和為Sn , 若a1=1,a3=4.
(1)若Sk=63,求k的值;
(2)設(shè)bn=log2an , 證明數(shù)列{bn}是等差數(shù)列;
(3)設(shè)cn=(﹣1)nbn , 求T=|c1|+|c2|+|c3|+…+|cn|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖給出的是計算 的值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是(

A.i≤2011
B.i>2011
C.i≤1005
D.i>1005

查看答案和解析>>

同步練習冊答案