求函數(shù)f(x)=48x-x3的極值.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值
專題:計(jì)算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:由題意求導(dǎo)f′(x)=48-3x2=-3(x+4)(x-4),從而確定函數(shù)的單調(diào)區(qū)間及極值.
解答: 解:f′(x)=48-3x2=-3(x+4)(x-4);
故當(dāng)x<-4或x>4時(shí),f′(x)<0,
當(dāng)-4<x<4時(shí),f′(x)>0;
故函數(shù)f(x)=48x-x3在(-∞,-4),(4,+∞)上單調(diào)遞減,
在(-4,4)上單調(diào)遞增;
故函數(shù)f(x)=48x-x3在x=-4處有極小值f(-4)=-128;
在x=4處有極大值f(4)=128.
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的綜合應(yīng)用,求極值注意說(shuō)明單調(diào)性,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={y|y=-ex+2},B={x|{y=
1-x2
},則(∁RB)∩A
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)棱PA⊥底面ABCD,AB=
3
,BC=1,PA=2,E為PD的中點(diǎn),則直線BE與平面ABCD所成角的正切值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線關(guān)于y軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),并且經(jīng)過(guò)點(diǎn)M(
3
,-2
3
),求它的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,a6=2,a5=5,則數(shù)列{lgan}的前10項(xiàng)和等于( 。
A、6B、5C、4D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2+mx+5)ex,x∈R,
(I)當(dāng)m=5時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)沒(méi)有極值點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c為互不相等的實(shí)數(shù),求證:a4+b4+c4>abc(a+b+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程(x-y)2+(xy-1)2=0的曲線是( 。
A、一條直線和一條雙曲線
B、兩條雙曲線
C、兩個(gè)點(diǎn)
D、以上答案都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA⊥平面AC,四邊形ABCD是矩形,E,F(xiàn)分別是AB,PD的中點(diǎn).
(1)求證:AF∥平面PCE;
(2)若二面角PC-CD-B為45°,AD=2,CD=3.
(i)求二面角P-EC-A的大小;
(ii)求點(diǎn)F到平面PCE的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案